Gurumoorthy
commited on
Commit
·
685dd3f
1
Parent(s):
769c87e
Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v3.zip +3 -0
- ppo-LunarLander-v3/_stable_baselines3_version +1 -0
- ppo-LunarLander-v3/data +99 -0
- ppo-LunarLander-v3/policy.optimizer.pth +3 -0
- ppo-LunarLander-v3/policy.pth +3 -0
- ppo-LunarLander-v3/pytorch_variables.pth +3 -0
- ppo-LunarLander-v3/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 268.63 +/- 22.67
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f80e046a7a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f80e046a830>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f80e046a8c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f80e046a950>", "_build": "<function ActorCriticPolicy._build at 0x7f80e046a9e0>", "forward": "<function ActorCriticPolicy.forward at 0x7f80e046aa70>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f80e046ab00>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f80e046ab90>", "_predict": "<function ActorCriticPolicy._predict at 0x7f80e046ac20>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f80e046acb0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f80e046ad40>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f80e046add0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f80e046d780>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1064960, "_total_timesteps": 1050000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1687911432258642817, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIDMeb1Ix626OktBNNa3+S+gE+c5TU2dswAAgD8AAIA/s0s2vRSeqj+G8SS/Ojryvt7bGz0fwKo9AAAAAAAAAABNm7c9XE90urpzQzpgBDU1XRh5u2jgZLkAAAAAAACAP32Qzr6TRWE/ph3KvgLXmL60OIe+F8tMvAAAAAAAAAAAjT7lPqdeVT9wWF+9edgLvuMArj0YR7a9AAAAAAAAAAAA30U9e1CJutLBn7sj1k44MC0cu/DV3DcAAIA/AACAPw2zkj1IAYO69Qw3vDrHr7R9nHO76p8jNAAAgD8AAIA/M/NVuvZUCbojJCc6uso+NiNWTDrSV0i5AACAPwAAgD9yS4C+Te12Pz5+LjzsFXO+SOXTvVbSOT0AAAAAAAAAAC2qFr4Pzje8TGkXO8YOKzkZWZo9G89MugAAgD8AAIA/wFNZPgB0nj/Yjlg+2WIvvsd0Lj6zTV+7AAAAAAAAAABTmwY+e0DYujerKLtfy1842McpvA5QQDkAAIA/AACAP2ZU37z2BQG8+RQDPUUYyL2UHT095pe+PgAAgD8AAIA/M3aCPR8l87mSApS7fB4VtnMscLu0ZbE6AACAPwAAgD+AwJg9e+iBumdcgbsc+3w4QWAyu4xQDzoAAIA/AACAPxqfQj2P5he6j70KuqnP1rTrMsu7ZJwlOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.014247619047619065, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQDAwKNQ0oBuMAWyUTRcBjAF0lEdAlCWxjBl+VnV9lChoBkdAYEhjDKoybmgHTegDaAhHQJQrrKhcqvx1fZQoaAZHQGThCWmgrYpoB03oA2gIR0CULSTNt65YdX2UKGgGR0Bj2IetCAtnaAdN6ANoCEdAlC1nI+4b0nV9lChoBkdAYPDHWjGkvmgHTegDaAhHQJQuPK4hEBt1fZQoaAZHQFwNigkC3gFoB03oA2gIR0CUMfGMn7YTdX2UKGgGR0Bgp6WLP2PDaAdN6ANoCEdAlEQC9ytFKHV9lChoBkdAYIU3vx6OYWgHTegDaAhHQJRHD0RODap1fZQoaAZHQF8PK8tf5UNoB03oA2gIR0CUSOTH80k4dX2UKGgGR0BiYwJVsDW9aAdN6ANoCEdAlElybc45tHV9lChoBkdAOBcUh3aBZ2gHTX4BaAhHQJRLHpW3jMp1fZQoaAZHQGL4LHEMspZoB03oA2gIR0CUU6oegctHdX2UKGgGR0Bk/Mx7AtWdaAdN6ANoCEdAlFPxZ6lchXV9lChoBkdAZgua86FM7GgHTegDaAhHQJRukGA08/51fZQoaAZHQGJ3dmHxjKBoB03oA2gIR0CUcYQ8wHqvdX2UKGgGR0Bdq/R/mT1TaAdN6ANoCEdAlHSgJHAh0XV9lChoBkdAYJ3ywwCbMGgHTegDaAhHQJR54rYoRZl1fZQoaAZHQGI3KpDNQj5oB03oA2gIR0CUeqkqc3ERdX2UKGgGR0BkqjPppvgnaAdN6ANoCEdAlH8Y5ksjFHV9lChoBkdAYz02ycCo0mgHTegDaAhHQJSAP8cdYGN1fZQoaAZHQGXQI2GZeAxoB03oA2gIR0CUgHIE8q4IdX2UKGgGR0BhoGYQarFPaAdN6ANoCEdAlIENAood/HV9lChoBkdAYzpgBtDUmWgHTegDaAhHQJSWfHKfWc11fZQoaAZHQGKjPh60IC5oB03oA2gIR0CUmtt/FzdUdX2UKGgGR0Bg/uBBiTdMaAdN6ANoCEdAlJ2x1cMVlHV9lChoBkdAWxvRWtEG7mgHTegDaAhHQJSeh78ejmF1fZQoaAZHQGBW0YsNDtxoB03oA2gIR0CUoUHU+cH4dX2UKGgGR0BeRAcLjPv8aAdN6ANoCEdAlK2HBYV6/3V9lChoBkdAYY+NMGorF2gHTegDaAhHQJSt19a2Wpt1fZQoaAZHQGYCKZlWfbtoB03oA2gIR0CUtDd+XqqwdX2UKGgGR0Bld03juKGdaAdN6ANoCEdAlMax4QjD9HV9lChoBkdAYwQO3lS0jWgHTegDaAhHQJTJ44Ia99N1fZQoaAZHQGMgbyH2ys1oB03oA2gIR0CUz1TIvJzUdX2UKGgGR0Bk3haV2Rq5aAdN6ANoCEdAlNAqhtcfNnV9lChoBkdAYA6U5dWyT2gHTegDaAhHQJTVIS+QEIR1fZQoaAZHQGWVpXp4bCJoB03oA2gIR0CU1pfhuO0cdX2UKGgGR0BiFf863iJgaAdN6ANoCEdAlNbWxIJ7cHV9lChoBkdAXMn3g1m8NGgHTegDaAhHQJTXlb2USqV1fZQoaAZHQF8nvy9VWCFoB03oA2gIR0CU8BIg/1QJdX2UKGgGR0BcCXuZ1FH8aAdN6ANoCEdAlPO9NahYeXV9lChoBkdAY7nHjIaLoGgHTegDaAhHQJT2EyCWeH11fZQoaAZHQGLHamGdqcpoB03oA2gIR0CU9sb5/LDAdX2UKGgGR0Bll9RBNVR2aAdN6ANoCEdAlPj65oXbd3V9lChoBkdAYR7LW7OE/WgHTegDaAhHQJUEAHjZL7J1fZQoaAZHQF8Bmjj7yhBoB03oA2gIR0CVBFSKFZgYdX2UKGgGR0BkPCTyJ9ApaAdN6ANoCEdAlQtow7DEWXV9lChoBkdAX0eioKlYU2gHTegDaAhHQJUjNyEL6UJ1fZQoaAZHQGN5sxO+IuZoB03oA2gIR0CVJow482aVdX2UKGgGR0BgeyXMQmNSaAdN6ANoCEdAlSw6hQFcIXV9lChoBkdAYdIggX/HYGgHTegDaAhHQJUtAIHC4z91fZQoaAZHQC49MsYl6Z9oB01SAWgIR0CVL3JNCZ4OdX2UKGgGR0Bjd5Dw6QvIaAdN6ANoCEdAlTLoLCvX9XV9lChoBkdAYnf/d69kBmgHTegDaAhHQJU0SsOoYN11fZQoaAZHQFaIeJHiFTNoB03oA2gIR0CVNIX0Gu9wdX2UKGgGR0Bg/W2/i5uqaAdN6ANoCEdAlTU5iExqPHV9lChoBkdAYH2nndO6/mgHTegDaAhHQJVOKj3225R1fZQoaAZHQGTl2BjFyaNoB03oA2gIR0CVUyeWOZLJdX2UKGgGR0BlHTRQaaTfaAdN6ANoCEdAlVY8gQpWm3V9lChoBkdAX5rYkE9t/GgHTegDaAhHQJVXLIo3Jgd1fZQoaAZHQFqApiI+GGpoB03oA2gIR0CVWdRf4REndX2UKGgGR0Bjng3PzFuOaAdN6ANoCEdAlWSldxAB1nV9lChoBkdAXbYn6VMVUWgHTegDaAhHQJVsP+kxh2J1fZQoaAZHQF6grO7g88toB03oA2gIR0CVb0JhOP/8dX2UKGgGR0BfR6TW5H3DaAdN6ANoCEdAlYNp48lolHV9lChoBkdAZVeVUMoc72gHTegDaAhHQJWLmeQMhHN1fZQoaAZHQGT8lNtZV4poB03oA2gIR0CVjLcgyM1kdX2UKGgGR0BklA7FKkEcaAdN6ANoCEdAlY90RODaoXV9lChoBkdAYFdDD0lJH2gHTegDaAhHQJWS+6OHWSV1fZQoaAZHQGC6qIBRyfdoB03oA2gIR0CVlBfs/pt8dX2UKGgGR0BWo6o2n88+aAdN6ANoCEdAlZRCjQAuI3V9lChoBkdAXSohKUVzqGgHTegDaAhHQJWUyQPqcEx1fZQoaAZHQD+e1Cw8nu1oB00mAWgIR0CVo6D28IzFdX2UKGgGR0BkLB8YyfthaAdN6ANoCEdAlaWFN1yNoHV9lChoBkdAYerhDPWxyGgHTegDaAhHQJWoQjRlYlp1fZQoaAZHQGJMSnk1dgRoB03oA2gIR0CVqerwOOKgdX2UKGgGR0BiEWj2zv7WaAdN6ANoCEdAlapeVTrE+HV9lChoBkdAY1obRWtEHGgHTegDaAhHQJWr5kiD/VB1fZQoaAZHQF09vrWy1NRoB03oA2gIR0CVtB5OJtSAdX2UKGgGR0BjhJE2Hck/aAdN6ANoCEdAlbpNAkcCHXV9lChoBkdAcihztCzC12gHTWQBaAhHQJW9KygPEsJ1fZQoaAZHQGWs3/HYHxBoB03oA2gIR0CVvVdV/+bWdX2UKGgGR0Bhm3RG+bmVaAdN6ANoCEdAldSsxO+IuXV9lChoBkdAY+HJ2+wkgWgHTegDaAhHQJXZ2yD7Ikt1fZQoaAZHQF35vStvGZNoB03oA2gIR0CV2ocqvvBrdX2UKGgGR0BkxXyup0fYaAdN6ANoCEdAldwKVlf7anV9lChoBkdAY5ajcEeQuGgHTegDaAhHQJXeM3kxREZ1fZQoaAZHQGBozguRLbpoB03oA2gIR0CV3xkzGgjAdX2UKGgGR0BflARK6FufaAdN6ANoCEdAld/EFr2xp3V9lChoBkdAcaJ9xIatLmgHTRUCaAhHQJXm5tl7MPl1fZQoaAZHQGJRLMs6JZZoB03oA2gIR0CV8VinYQJ5dX2UKGgGR0Bg9TZg5R0maAdN6ANoCEdAlfPHzcynDXV9lChoBkdAZJV0NjLB9GgHTegDaAhHQJX3+lGgBcR1fZQoaAZHQGFuvBi1AqxoB03oA2gIR0CV+7MPz4DcdX2UKGgGR0BbvHYL9deIaAdN6ANoCEdAlf6wdS2phnV9lChoBkdAOGyZjQRf4WgHTTcBaAhHQJX/g9ZA6dV1fZQoaAZHwDtuvKU3XI5oB01oAWgIR0CWEiJTER8MdX2UKGgGR0BmuzqptJnQaAdN6ANoCEdAlhRoHTqjanV9lChoBkdAZNLhMrVe8mgHTegDaAhHQJYXDcXWOIZ1fZQoaAZHQGJBeDnNgShoB03oA2gIR0CWFzD5TIeYdX2UKGgGR0BdB6lYU34saAdN6ANoCEdAlhqMHKOktXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 260, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f80e046a7a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f80e046a830>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f80e046a8c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f80e046a950>", "_build": "<function ActorCriticPolicy._build at 0x7f80e046a9e0>", "forward": "<function ActorCriticPolicy.forward at 0x7f80e046aa70>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f80e046ab00>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f80e046ab90>", "_predict": "<function ActorCriticPolicy._predict at 0x7f80e046ac20>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f80e046acb0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f80e046ad40>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f80e046add0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f80e046d780>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1556480, "_total_timesteps": 1550000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1687913197083560202, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMzvrtLFrg9mDPOvcuHgr7Fckm9CxcuvAAAAAAAAAAAZprTvHtenLrtc8871DWHPEXznjoo+Gs9AACAPwAAgD8ztsa8XKsPvOxsuz3KqYS9bi7wvIqCUb4AAIA/AACAP81KzbzDcXK6a920Mz1HOi9Ts5m64GHKswAAgD8AAIA/zamZvNIrvTyTpsw9U9Jrvty/nDx0AkW9AAAAAAAAAAD60ma+F6n/PqcNhj29koy+llEHvjY3Iz0AAAAAAAAAAMARkj0J0ko+RnN8vp09or6xHei9QG27vAAAAAAAAAAATZloPTKqhz4S8xS+25CjvgnygbxgFMu9AAAAAAAAAADTqyq+R5+qPyNtI7/gB+q+fklOvmCMdL4AAAAAAAAAAICVTb0UkK26/qyCNkytgjEHc1W6RvaVtQAAgD8AAIA/mjl9uqhsiD1yIzI+1LZkvjxldj11O9U9AAAAAAAAAACzBNA9RDd8P46DFT5mi+C+fxd+PgtssDwAAAAAAAAAAMAPcT5u8ZU/qODWPis/5b4Gr/A+Y128PQAAAAAAAAAAMz/3vXHCC7tNuKE3BemNNLXMqztlL8C2AACAPwAAgD/aSf69ey2ZPm0CeT7D84e+BpeHPUMzLD0AAAAAAAAAAM2jujzdFBE+BQRyvYxfbr5y4BK9sObrPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004180645161290242, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVBgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHMuiRnvlU+MAWyUTQEBjAF0lEdAql9AnfEXL3V9lChoBkdAc5jcd5prUWgHS/NoCEdAql9+OXE61nV9lChoBkdAcNdS0BwMpmgHTQEBaAhHQKpfulnAZbZ1fZQoaAZHQHDw4FzMibFoB0v/aAhHQKpgJoIv8Il1fZQoaAZHQHFI8BhhH9ZoB0v/aAhHQKpgVQRf4RF1fZQoaAZHQHIS8SGrS3NoB0vvaAhHQKphMUwi7kJ1fZQoaAZHQHBWimZVn29oB0v9aAhHQKphUbfgrH51fZQoaAZHQHMEbRa5f+loB0vmaAhHQKphfPPcBU91fZQoaAZHQHI3u1WsA/9oB0v9aAhHQKphpo7FKkF1fZQoaAZHQHDXRKcurZJoB00AAWgIR0CqYewKBun/dX2UKGgGR0Bwu0ffXPJJaAdNAQFoCEdAqmH1yLhrFnV9lChoBkdAcmXkBS1ma2gHS/ZoCEdAqmH/TLGJenV9lChoBkdAcS9Vv/BFeGgHS/1oCEdAqmKBsj3VTnV9lChoBkdAczz+0gKWs2gHS/hoCEdAqmLQ88s+V3V9lChoBkdAcfLLvCuU2WgHS+poCEdAqmL3tQbdanV9lChoBkdAcSgwCr92o2gHS/hoCEdAqmMjgl4TsnV9lChoBkdAcE+h1DBuXWgHS/9oCEdAqmN4PsiSq3V9lChoBkdAcYiqtozvZ2gHS99oCEdAqmOCtihFmXV9lChoBkdAcfgf642CNGgHTTEBaAhHQKpjn/MGHHp1fZQoaAZHQG9wlJ6IFeRoB00LAWgIR0CqY8y00FbFdX2UKGgGR0BvnRqCYkVvaAdL+mgIR0CqY/oBBAv+dX2UKGgGR0BzL8K1G9YfaAdL82gIR0CqZGUO3DvWdX2UKGgGR0Bu2AZ88cMmaAdNDQFoCEdAqmTbJZGKAXV9lChoBkdAcW+O45Lh72gHS+RoCEdAqmTxQzk6tHV9lChoBkdAcvj9TxXnyWgHTQABaAhHQKplASbpeNV1fZQoaAZHQHKDM7QswtdoB0vwaAhHQKplEBas6q91fZQoaAZHQHMOUx20Re1oB00cAWgIR0CqZTOL74zrdX2UKGgGR0BwKJPDYRNAaAdNAwFoCEdAqmVc78vVVnV9lChoBkdAcLBejmCAc2gHS/RoCEdAqmW2tlqagHV9lChoBkdAcIWtdAxBV2gHS9hoCEdAqmXEYTCcgHV9lChoBkdAcpEJd0JWvWgHS9xoCEdAqmXzgsK9f3V9lChoBkdAczfM6zVtoGgHS/toCEdAqmYT+xW1dHV9lChoBkdAbuiMbWEsa2gHS+BoCEdAqmZG1YyO73V9lChoBkdAcWigZjx0+2gHS+VoCEdAqmZ0yJsO5XV9lChoBkdAcb47U5MlC2gHS/ZoCEdAqmaM6HTJAHV9lChoBkdAckU4BmwqzGgHS/ZoCEdAqmb+hufmLnV9lChoBkdAcG7snAqNImgHTRMBaAhHQKpvgfK6nR91fZQoaAZHQHAltKVY6n1oB00DAWgIR0Cqb/hEa2nbdX2UKGgGR0ByGDluFYdRaAdL42gIR0CqcANNzr/sdX2UKGgGR0ByyI7PppvhaAdL4GgIR0CqcA4+bExZdX2UKGgGR0Bun6GrS3LFaAdL72gIR0CqcEv8IiTudX2UKGgGR0BxQwR7JGONaAdNCQFoCEdAqnCxaaCtinV9lChoBkdAco4xOLzf8GgHTQcBaAhHQKpw0VC5Vfh1fZQoaAZHQG3WqXOW0JFoB0v7aAhHQKpw1lT3qRl1fZQoaAZHQHDIcYAKfFtoB0voaAhHQKpw8DZlFtt1fZQoaAZHQHCon+dbxExoB0vwaAhHQKpxFHSWqtJ1fZQoaAZHQHLDbMPjGT9oB0vlaAhHQKpxPHjIaLp1fZQoaAZHQHMKnLaEi+toB0vuaAhHQKpxOVfu1F91fZQoaAZHQHJKGQ0XP7hoB00FAWgIR0Cqcclb3XZodX2UKGgGR0BvH9zU7Sy/aAdL+mgIR0CqcdbkwN9ZdX2UKGgGR0ByCjpjc2zfaAdL82gIR0Cqcdq9oN/fdX2UKGgGR0Bxk9eokzGhaAdL2mgIR0CqcpsJIDoydX2UKGgGR0BtZkpAlfJFaAdNEQFoCEdAqnKl94NZvHV9lChoBkdAcGH/k/8l5WgHS99oCEdAqnK2VX3g1nV9lChoBkdActBYDDCP62gHTQ0BaAhHQKpyxZdv8651fZQoaAZHQHF0EExIre9oB00DAWgIR0CqcwxEWqLkdX2UKGgGR0BxWLuuzQeFaAdL+GgIR0Cqczl3pwCKdX2UKGgGR0Bwb5a9sabXaAdL6mgIR0Cqc2mNR3vAdX2UKGgGR0Bw55Q9A5aNaAdL8WgIR0Cqc5+zdDYzdX2UKGgGR0By+8ZAIIGAaAdL7GgIR0Cqc9Q71ZkkdX2UKGgGR0BSwQsTWXkYaAdLr2gIR0Cqc9otL+PzdX2UKGgGR0BzQxZgXuVpaAdL/2gIR0Cqc+hUJfICdX2UKGgGR0Bvbzr/sE7oaAdL82gIR0CqdA5vDP4VdX2UKGgGR0BxQoAKfFrEaAdNIQFoCEdAqnQtk6Lfk3V9lChoBkdAczMpTMqz7mgHTRYBaAhHQKp0dKwIMSd1fZQoaAZHQG9uQqRU3n9oB0v3aAhHQKp0vBrvb491fZQoaAZHQHA3zkdV/+doB00FAWgIR0CqdOj9XLeRdX2UKGgGR0Bx86LCN0eVaAdL2GgIR0CqdWNFz+3pdX2UKGgGR0BwvE5DJEH/aAdL5mgIR0CqdXQHiWE9dX2UKGgGR0BtIiRyOq//aAdL7GgIR0CqdYLS3LFGdX2UKGgGR0Bw77y7PIGRaAdNCAFoCEdAqnYncSGrS3V9lChoBkdAbsvSk0rK/2gHS+FoCEdAqnZAQDmr83V9lChoBkdAcQNfhddE9mgHS+VoCEdAqnaY8QqZt3V9lChoBkdAblGFkhA4XGgHS9ZoCEdAqnbqWw/xD3V9lChoBkdAc5lIt16mf2gHS/JoCEdAqnchwuM+/3V9lChoBkdAc5lLHuJDV2gHTS4BaAhHQKp3UwC8vmJ1fZQoaAZHQHFRl8w5/9ZoB0vtaAhHQKp3Ws7MgU11fZQoaAZHQHInjE3sHB1oB0v0aAhHQKp3+qT8pCt1fZQoaAZHQGy+ggxJul5oB00AAWgIR0CqeAJK8L8adX2UKGgGR0By4x8Z1mrbaAdNDwFoCEdAqngJhnanJnV9lChoBkdAcRXV2zOX3WgHTQEBaAhHQKp4lVNpM6B1fZQoaAZHQG/EdSVGCqZoB0v8aAhHQKp46x+KCQN1fZQoaAZHQHAg+fywwCdoB00WAWgIR0CqeaXueBhAdX2UKGgGR0BtmaZfD1oQaAdNAgFoCEdAqnoY1pCa7XV9lChoBkdAcQdrIHTqjmgHTQsBaAhHQKp6JKsdT5x1fZQoaAZHQHKv4AOrhitoB0vkaAhHQKp6N+XqqwR1fZQoaAZHQG8+xT850bNoB0viaAhHQKp6SGA08/51fZQoaAZHQHD+/O6d1+1oB00aAWgIR0CqenoPsiSrdX2UKGgGR0Bvbp4B3iaRaAdNDQFoCEdAqnt+by6MBXV9lChoBkdAcmnEAHVwxWgHS+loCEdAqnukBnzxw3V9lChoBkdAcL8tWdVebGgHTQkBaAhHQKp7x/Ue+251fZQoaAZHQHEpgc94eLhoB00EAWgIR0Cqe+r2xptadX2UKGgGR0BuouUnogV5aAdNAgFoCEdAqnwW4y44InV9lChoBkdAcfeCFK02L2gHS+9oCEdAqnx70rbxmXV9lChoBkdAcKYn4O+ZgGgHS/NoCEdAqnyBSUC7snV9lChoBkdAcBBdY4hllWgHTQQBaAhHQKp81QfIS151fZQoaAZHQG8dbz06HTJoB00CAWgIR0CqfYfbTMJQdX2UKGgGR0BxRtfQa72+aAdNFwFoCEdAqn5Qq9XcQHV9lChoBkdAcXRVdonKGWgHS9hoCEdAqn5Yv38GcHV9lChoBkdAbjeAMlTm4mgHTQIBaAhHQKp+ipazNUx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 380, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b19c050f6869bf6f50ceed94e78f4846cb3ad03b43697b78c5f89f96bf845cf6
|
3 |
+
size 146675
|
ppo-LunarLander-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v3/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f80e046a7a0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f80e046a830>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f80e046a8c0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f80e046a950>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f80e046a9e0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f80e046aa70>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f80e046ab00>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f80e046ab90>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f80e046ac20>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f80e046acb0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f80e046ad40>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f80e046add0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f80e046d780>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1556480,
|
25 |
+
"_total_timesteps": 1550000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1687913197083560202,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMzvrtLFrg9mDPOvcuHgr7Fckm9CxcuvAAAAAAAAAAAZprTvHtenLrtc8871DWHPEXznjoo+Gs9AACAPwAAgD8ztsa8XKsPvOxsuz3KqYS9bi7wvIqCUb4AAIA/AACAP81KzbzDcXK6a920Mz1HOi9Ts5m64GHKswAAgD8AAIA/zamZvNIrvTyTpsw9U9Jrvty/nDx0AkW9AAAAAAAAAAD60ma+F6n/PqcNhj29koy+llEHvjY3Iz0AAAAAAAAAAMARkj0J0ko+RnN8vp09or6xHei9QG27vAAAAAAAAAAATZloPTKqhz4S8xS+25CjvgnygbxgFMu9AAAAAAAAAADTqyq+R5+qPyNtI7/gB+q+fklOvmCMdL4AAAAAAAAAAICVTb0UkK26/qyCNkytgjEHc1W6RvaVtQAAgD8AAIA/mjl9uqhsiD1yIzI+1LZkvjxldj11O9U9AAAAAAAAAACzBNA9RDd8P46DFT5mi+C+fxd+PgtssDwAAAAAAAAAAMAPcT5u8ZU/qODWPis/5b4Gr/A+Y128PQAAAAAAAAAAMz/3vXHCC7tNuKE3BemNNLXMqztlL8C2AACAPwAAgD/aSf69ey2ZPm0CeT7D84e+BpeHPUMzLD0AAAAAAAAAAM2jujzdFBE+BQRyvYxfbr5y4BK9sObrPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.004180645161290242,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVBgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHMuiRnvlU+MAWyUTQEBjAF0lEdAql9AnfEXL3V9lChoBkdAc5jcd5prUWgHS/NoCEdAql9+OXE61nV9lChoBkdAcNdS0BwMpmgHTQEBaAhHQKpfulnAZbZ1fZQoaAZHQHDw4FzMibFoB0v/aAhHQKpgJoIv8Il1fZQoaAZHQHFI8BhhH9ZoB0v/aAhHQKpgVQRf4RF1fZQoaAZHQHIS8SGrS3NoB0vvaAhHQKphMUwi7kJ1fZQoaAZHQHBWimZVn29oB0v9aAhHQKphUbfgrH51fZQoaAZHQHMEbRa5f+loB0vmaAhHQKphfPPcBU91fZQoaAZHQHI3u1WsA/9oB0v9aAhHQKphpo7FKkF1fZQoaAZHQHDXRKcurZJoB00AAWgIR0CqYewKBun/dX2UKGgGR0Bwu0ffXPJJaAdNAQFoCEdAqmH1yLhrFnV9lChoBkdAcmXkBS1ma2gHS/ZoCEdAqmH/TLGJenV9lChoBkdAcS9Vv/BFeGgHS/1oCEdAqmKBsj3VTnV9lChoBkdAczz+0gKWs2gHS/hoCEdAqmLQ88s+V3V9lChoBkdAcfLLvCuU2WgHS+poCEdAqmL3tQbdanV9lChoBkdAcSgwCr92o2gHS/hoCEdAqmMjgl4TsnV9lChoBkdAcE+h1DBuXWgHS/9oCEdAqmN4PsiSq3V9lChoBkdAcYiqtozvZ2gHS99oCEdAqmOCtihFmXV9lChoBkdAcfgf642CNGgHTTEBaAhHQKpjn/MGHHp1fZQoaAZHQG9wlJ6IFeRoB00LAWgIR0CqY8y00FbFdX2UKGgGR0BvnRqCYkVvaAdL+mgIR0CqY/oBBAv+dX2UKGgGR0BzL8K1G9YfaAdL82gIR0CqZGUO3DvWdX2UKGgGR0Bu2AZ88cMmaAdNDQFoCEdAqmTbJZGKAXV9lChoBkdAcW+O45Lh72gHS+RoCEdAqmTxQzk6tHV9lChoBkdAcvj9TxXnyWgHTQABaAhHQKplASbpeNV1fZQoaAZHQHKDM7QswtdoB0vwaAhHQKplEBas6q91fZQoaAZHQHMOUx20Re1oB00cAWgIR0CqZTOL74zrdX2UKGgGR0BwKJPDYRNAaAdNAwFoCEdAqmVc78vVVnV9lChoBkdAcLBejmCAc2gHS/RoCEdAqmW2tlqagHV9lChoBkdAcIWtdAxBV2gHS9hoCEdAqmXEYTCcgHV9lChoBkdAcpEJd0JWvWgHS9xoCEdAqmXzgsK9f3V9lChoBkdAczfM6zVtoGgHS/toCEdAqmYT+xW1dHV9lChoBkdAbuiMbWEsa2gHS+BoCEdAqmZG1YyO73V9lChoBkdAcWigZjx0+2gHS+VoCEdAqmZ0yJsO5XV9lChoBkdAcb47U5MlC2gHS/ZoCEdAqmaM6HTJAHV9lChoBkdAckU4BmwqzGgHS/ZoCEdAqmb+hufmLnV9lChoBkdAcG7snAqNImgHTRMBaAhHQKpvgfK6nR91fZQoaAZHQHAltKVY6n1oB00DAWgIR0Cqb/hEa2nbdX2UKGgGR0ByGDluFYdRaAdL42gIR0CqcANNzr/sdX2UKGgGR0ByyI7PppvhaAdL4GgIR0CqcA4+bExZdX2UKGgGR0Bun6GrS3LFaAdL72gIR0CqcEv8IiTudX2UKGgGR0BxQwR7JGONaAdNCQFoCEdAqnCxaaCtinV9lChoBkdAco4xOLzf8GgHTQcBaAhHQKpw0VC5Vfh1fZQoaAZHQG3WqXOW0JFoB0v7aAhHQKpw1lT3qRl1fZQoaAZHQHDIcYAKfFtoB0voaAhHQKpw8DZlFtt1fZQoaAZHQHCon+dbxExoB0vwaAhHQKpxFHSWqtJ1fZQoaAZHQHLDbMPjGT9oB0vlaAhHQKpxPHjIaLp1fZQoaAZHQHMKnLaEi+toB0vuaAhHQKpxOVfu1F91fZQoaAZHQHJKGQ0XP7hoB00FAWgIR0Cqcclb3XZodX2UKGgGR0BvH9zU7Sy/aAdL+mgIR0CqcdbkwN9ZdX2UKGgGR0ByCjpjc2zfaAdL82gIR0Cqcdq9oN/fdX2UKGgGR0Bxk9eokzGhaAdL2mgIR0CqcpsJIDoydX2UKGgGR0BtZkpAlfJFaAdNEQFoCEdAqnKl94NZvHV9lChoBkdAcGH/k/8l5WgHS99oCEdAqnK2VX3g1nV9lChoBkdActBYDDCP62gHTQ0BaAhHQKpyxZdv8651fZQoaAZHQHF0EExIre9oB00DAWgIR0CqcwxEWqLkdX2UKGgGR0BxWLuuzQeFaAdL+GgIR0Cqczl3pwCKdX2UKGgGR0Bwb5a9sabXaAdL6mgIR0Cqc2mNR3vAdX2UKGgGR0Bw55Q9A5aNaAdL8WgIR0Cqc5+zdDYzdX2UKGgGR0By+8ZAIIGAaAdL7GgIR0Cqc9Q71ZkkdX2UKGgGR0BSwQsTWXkYaAdLr2gIR0Cqc9otL+PzdX2UKGgGR0BzQxZgXuVpaAdL/2gIR0Cqc+hUJfICdX2UKGgGR0Bvbzr/sE7oaAdL82gIR0CqdA5vDP4VdX2UKGgGR0BxQoAKfFrEaAdNIQFoCEdAqnQtk6Lfk3V9lChoBkdAczMpTMqz7mgHTRYBaAhHQKp0dKwIMSd1fZQoaAZHQG9uQqRU3n9oB0v3aAhHQKp0vBrvb491fZQoaAZHQHA3zkdV/+doB00FAWgIR0CqdOj9XLeRdX2UKGgGR0Bx86LCN0eVaAdL2GgIR0CqdWNFz+3pdX2UKGgGR0BwvE5DJEH/aAdL5mgIR0CqdXQHiWE9dX2UKGgGR0BtIiRyOq//aAdL7GgIR0CqdYLS3LFGdX2UKGgGR0Bw77y7PIGRaAdNCAFoCEdAqnYncSGrS3V9lChoBkdAbsvSk0rK/2gHS+FoCEdAqnZAQDmr83V9lChoBkdAcQNfhddE9mgHS+VoCEdAqnaY8QqZt3V9lChoBkdAblGFkhA4XGgHS9ZoCEdAqnbqWw/xD3V9lChoBkdAc5lIt16mf2gHS/JoCEdAqnchwuM+/3V9lChoBkdAc5lLHuJDV2gHTS4BaAhHQKp3UwC8vmJ1fZQoaAZHQHFRl8w5/9ZoB0vtaAhHQKp3Ws7MgU11fZQoaAZHQHInjE3sHB1oB0v0aAhHQKp3+qT8pCt1fZQoaAZHQGy+ggxJul5oB00AAWgIR0CqeAJK8L8adX2UKGgGR0By4x8Z1mrbaAdNDwFoCEdAqngJhnanJnV9lChoBkdAcRXV2zOX3WgHTQEBaAhHQKp4lVNpM6B1fZQoaAZHQG/EdSVGCqZoB0v8aAhHQKp46x+KCQN1fZQoaAZHQHAg+fywwCdoB00WAWgIR0CqeaXueBhAdX2UKGgGR0BtmaZfD1oQaAdNAgFoCEdAqnoY1pCa7XV9lChoBkdAcQdrIHTqjmgHTQsBaAhHQKp6JKsdT5x1fZQoaAZHQHKv4AOrhitoB0vkaAhHQKp6N+XqqwR1fZQoaAZHQG8+xT850bNoB0viaAhHQKp6SGA08/51fZQoaAZHQHD+/O6d1+1oB00aAWgIR0CqenoPsiSrdX2UKGgGR0Bvbp4B3iaRaAdNDQFoCEdAqnt+by6MBXV9lChoBkdAcmnEAHVwxWgHS+loCEdAqnukBnzxw3V9lChoBkdAcL8tWdVebGgHTQkBaAhHQKp7x/Ue+251fZQoaAZHQHEpgc94eLhoB00EAWgIR0Cqe+r2xptadX2UKGgGR0BuouUnogV5aAdNAgFoCEdAqnwW4y44InV9lChoBkdAcfeCFK02L2gHS+9oCEdAqnx70rbxmXV9lChoBkdAcKYn4O+ZgGgHS/NoCEdAqnyBSUC7snV9lChoBkdAcBBdY4hllWgHTQQBaAhHQKp81QfIS151fZQoaAZHQG8dbz06HTJoB00CAWgIR0CqfYfbTMJQdX2UKGgGR0BxRtfQa72+aAdNFwFoCEdAqn5Qq9XcQHV9lChoBkdAcXRVdonKGWgHS9hoCEdAqn5Yv38GcHV9lChoBkdAbjeAMlTm4mgHTQIBaAhHQKp+ipazNUx1ZS4="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 380,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7241c26299454ab2317c9f777d5aee9519d53cb174e886b5938c5120b235f57f
|
3 |
+
size 87929
|
ppo-LunarLander-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e8fed94cbc630c061a4c3369ddef5a85880d96d990082e7f4b780daa20e48106
|
3 |
+
size 43329
|
ppo-LunarLander-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v3/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 268.6302101544285, "std_reward": 22.668326407768248, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-28T01:13:03.531238"}
|