--- language: pt license: apache-2.0 tags: - generated_from_trainer - whisper-event datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: openai/whisper-medium results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_11_0 type: mozilla-foundation/common_voice_11_0 config: pt split: test args: pt metrics: - name: Wer type: wer value: 6.598745817992301 --- This model is a conversion to ggml from [pierreguillou/whisper-medium-portuguese](https://huggingface.co/pierreguillou/whisper-medium-portuguese) . The conversion was done at 2023-09-11 with the official script convert-h5-to-ggml.py from whisper.cpp. No special parameters were used. # Original Card - Portuguese Medium Whisper This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the common_voice_11_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2628 - Wer: 6.5987 ## Blog post All information about this model in this blog post: [Speech-to-Text & IA | Transcreva qualquer áudio para o português com o Whisper (OpenAI)... sem nenhum custo!](https://medium.com/@pierre_guillou/speech-to-text-ia-transcreva-qualquer-%C3%A1udio-para-o-portugu%C3%AAs-com-o-whisper-openai-sem-ad0c17384681). ## New SOTA The Normalized WER in the [OpenAI Whisper article](https://cdn.openai.com/papers/whisper.pdf) with the [Common Voice 9.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_9_0) test dataset is 8.1. As this test dataset is similar to the [Common Voice 11.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0) test dataset used to evaluate our model (WER and WER Norm), it means that **our Portuguese Medium Whisper is better than the [Medium Whisper](https://huggingface.co/openai/whisper-medium) model at transcribing audios Portuguese in text** (and even better than the [Whisper Large](https://huggingface.co/openai/whisper-large) that has a WER Norm of 7.1!). ![OpenAI results with Whisper Medium and Test dataset of Commons Voice 9.0](https://huggingface.co/pierreguillou/whisper-medium-portuguese/resolve/main/whisper_medium_portuguese_wer_commonvoice9.png) ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 9e-06 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 6000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.0333 | 2.07 | 1500 | 0.2073 | 6.9770 | | 0.0061 | 5.05 | 3000 | 0.2628 | 6.5987 | | 0.0007 | 8.03 | 4500 | 0.2960 | 6.6979 | | 0.0004 | 11.0 | 6000 | 0.3212 | 6.6794 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2