File size: 1,770 Bytes
6daf1e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: apache-2.0
base_model: GuysTrans/bart-base-finetuned-xsum
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: bart-base-generation
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bart-base-generation

This model is a fine-tuned version of [GuysTrans/bart-base-finetuned-xsum](https://huggingface.co/GuysTrans/bart-base-finetuned-xsum) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1193
- Rouge1: 16.67
- Rouge2: 12.3466
- Rougel: 15.9675
- Rougelsum: 16.4462
- Bleu-1: 0.0065
- Bleu-2: 0.0059
- Bleu-3: 0.0056
- Bleu-4: 0.0055
- Gen Len: 20.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Rouge1 | Rouge2  | Rougel  | Rougelsum | Bleu-1 | Bleu-2 | Bleu-3 | Bleu-4 | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:|:-------:|:---------:|:------:|:------:|:------:|:------:|:-------:|
| 2.1879        | 1.0   | 28600 | 1.1193          | 16.67  | 12.3466 | 15.9675 | 16.4462   | 0.0065 | 0.0059 | 0.0056 | 0.0055 | 20.0    |


### Framework versions

- Transformers 4.33.0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3