File size: 13,718 Bytes
59232ab
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7bc8a6a6fe20>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7bc8a6a6feb0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7bc8a6a6ff40>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7bc8a6a78040>", "_build": "<function ActorCriticPolicy._build at 0x7bc8a6a780d0>", "forward": "<function ActorCriticPolicy.forward at 0x7bc8a6a78160>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7bc8a6a781f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7bc8a6a78280>", "_predict": "<function ActorCriticPolicy._predict at 0x7bc8a6a78310>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7bc8a6a783a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7bc8a6a78430>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7bc8a6a784c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7bc8a6c0f1c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1717244229270925738, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJp2Yz32/Hi6nbzOuyC1IzZ3iKW6s2OStQAAgD8AAAAAGrRhvdU0nz8c0om+NkgQvwosHr5b9oC+AAAAAAAAAACmkT0+FLvgPp59vr1sG9q+VrUvPjf9k70AAAAAAAAAAJpHnTx2Aya8W3uTPeZO7L33r469iFojPgAAgD8AAAAAM/SovPIjsT+2hci+Wg6WviPXJjsCWZu9AAAAAAAAAADTA0I+vXseP7riNL6iXOe+6gsIPjXDGb4AAAAAAAAAAJpp97oUSKG6lomeNhpzkzG5Vkg6syC3tQAAgD8AAIA/pj1jPl+O1T788D6+n/HhvsZF8j1ex5+9AAAAAAAAAAAa4Wq93oezP47V174ziDa+7PJuvQUnm74AAAAAAAAAAGa/DT27p68/zq4tP0bXyr7g8Lm8rMOJvAAAAAAAAAAAmsLEPP6Cxj2Gf0i91jyzvu+4JbxFyGU9AAAAAAAAAAAzv6Y77BWNOiBJrzuOMnE8yldkPK2dVD0AAAAAAACAP7phKr6pFFE/AnmOuw3p774VRoG+okjEPQAAAAAAAAAAkxwfvjbRdrwkq5C9mW9nPBf74D3pAzm9AAAAAAAAgD8amvg9JXaVP0eSjj43EC2/JEvqPdVrBT4AAAAAAAAAAIAX7j3ZaEs/q+JhPdRGDL+Qg7U9O/QBPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV6gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG/Q158jRlaMAWyUS7mMAXSUR0DIiu7/n4fwdX2UKGgGR0BwEkDKYAsDaAdLt2gIR0DIivC4OMESdX2UKGgGR0ByKXN2TxG2aAdL1mgIR0DIivYVdonKdX2UKGgGR0BudNh5Pdl/aAdLxmgIR0DIivXl6qsEdX2UKGgGR0BvPE5EMLF5aAdLzGgIR0DIixdxjriVdX2UKGgGR0BmcnEXLvCuaAdN6ANoCEdAyIsbNNahYnV9lChoBkdAZEzQQ+UyHmgHTegDaAhHQMiLINk4FRp1fZQoaAZHQHEpXjENvwVoB00cAWgIR0DIiyymoBJadX2UKGgGR0BzmFZ4fOlgaAdLuWgIR0DIi0s1fmcOdX2UKGgGR0BxwfO1OTJRaAdL32gIR0DIi2bKHO8kdX2UKGgGR0Bxef6FdszmaAdL5GgIR0DIi3xmdy1edX2UKGgGR0BxCIcKgIyCaAdL+WgIR0DIi5Q8W9DhdX2UKGgGR0Bx9dXwLE1maAdL32gIR0DIi7QQz1sddX2UKGgGR0Bx0WfJ3gUDaAdLwmgIR0DIi83HcUM5dX2UKGgGR0BwJOWa+evqaAdLymgIR0DIi94kona4dX2UKGgGR0BvQaa3I+4caAdLumgIR0DIi+qSgXdkdX2UKGgGR0BwQY2YOUdJaAdL5GgIR0DIi/qs8xKydX2UKGgGR0BxSaCz1K5DaAdL5GgIR0DIjADpRoAXdX2UKGgGR0BxDKy4Wk8BaAdLzGgIR0DIjAbD8+A3dX2UKGgGR0Byx7TNMXabaAdNZwFoCEdAyIwRWNFSbnV9lChoBkdAclcOlfqoqGgHS95oCEdAyIweiC8OC3V9lChoBkdAdBRffoA4oGgHS+toCEdAyIw7Vy3kP3V9lChoBkdAbfpqkdmxuGgHS9NoCEdAyIxBsEaESXV9lChoBkdAch+F+uvECWgHS9toCEdAyIxpx5LRKHV9lChoBkdAcT9z8gpz92gHS9toCEdAyIyB3ztkWnV9lChoBkdAcumAzHjp92gHS9ZoCEdAyIyUd8zAOHV9lChoBkdAcL7gpjMFEGgHS7NoCEdAyI779lVcU3V9lChoBkdAaQiavRqoImgHTegDaAhHQMiPJ1JL/S91fZQoaAZHQHJs7oOhCdBoB0vAaAhHQMiPNwrc0tR1fZQoaAZHQHIrJK3/gixoB0v3aAhHQMiPVHyEtd11fZQoaAZHQHFpdGqgh8poB0vlaAhHQMiPXs90Rvp1fZQoaAZHQHJyo1P3ztloB0vVaAhHQMiPZXD3ueB1fZQoaAZHQHASHeN1hb5oB0vWaAhHQMiPcxeTmnx1fZQoaAZHQHL7Z8rqdH5oB0vtaAhHQMiPgKxTsIF1fZQoaAZHQGdjF67dzn1oB03oA2gIR0DIj5Ck43m3dX2UKGgGR0ByMojKPn0TaAdL3GgIR0DIj7PSa3I/dX2UKGgGR0By6StKZlWfaAdL32gIR0DIj8EGgSOBdX2UKGgGR0By14274BV/aAdNCAFoCEdAyI/NwWnCO3V9lChoBkdAcJpF85S3s2gHS8doCEdAyI/NWcz68HV9lChoBkdAb9OmzjWCmWgHS8hoCEdAyI/e2KEWZnV9lChoBkdAcV3Y4hllLGgHS89oCEdAyI/1VVghKXV9lChoBkdAc8OUwztTk2gHS9poCEdAyJAWtthuwXV9lChoBkdAb6bJ+UhV2mgHS8RoCEdAyJAkETxoZnV9lChoBkdAcBjBfa6BiGgHS9BoCEdAyJAm2MsH0XV9lChoBkdAcF+Y3eenRGgHS8doCEdAyJBA8cuJ13V9lChoBkdAcEZ+3pfQbGgHS8hoCEdAyJBRR7Z393V9lChoBkdAb7EbNr0rb2gHS+ZoCEdAyJBcalUIcHV9lChoBkdAcRyZUT+NtWgHS+BoCEdAyJBgk4WDYnV9lChoBkdAccs49ovi+GgHS89oCEdAyJBvWqcVg3V9lChoBkdAcyQ0Rvm5lWgHTQcCaAhHQMiQdDUExIt1fZQoaAZHQHDkM6BAfMhoB0vIaAhHQMiQh64lQdl1fZQoaAZHQHH3iQgcLjRoB0vFaAhHQMiQj2sRxtJ1fZQoaAZHQHNcWAoXsPdoB0vZaAhHQMiQjw/PgNx1fZQoaAZHQHNE/YraufVoB0vCaAhHQMiQnXdsSCh1fZQoaAZHQHN4eSGJvYRoB00WAWgIR0DIkKUwevIPdX2UKGgGR0BzertOVPepaAdL6GgIR0DIkK0CT2WZdX2UKGgGR0Bu1GyVv/BFaAdL0mgIR0DIkMFaQmu1dX2UKGgGR0BwC46q814xaAdLvWgIR0DIkPavHLiddX2UKGgGR0Byskb+98JEaAdL3mgIR0DIkPzmlqJudX2UKGgGR0BxddekYXO4aAdL72gIR0DIkQFqrR0EdX2UKGgGR0BuCFU83dbgaAdLwGgIR0DIkRPVI7NjdX2UKGgGR0BynJDRc/t6aAdL2GgIR0DIkSF8iOebdX2UKGgGR0BxYr7cfvF4aAdL/2gIR0DIkR9biZOSdX2UKGgGR0BvpjOHFglXaAdL4WgIR0DIkTi5NGmUdX2UKGgGR0BweAEt/WlNaAdL0GgIR0DIkTl/SYw7dX2UKGgGR0BxBDLfUF0QaAdL1GgIR0DIkVCo86mwdX2UKGgGR0BwIhENOM2naAdL42gIR0DIkWlHSWqtdX2UKGgGR0BxFiuuA7PqaAdLxWgIR0DIkW/Z9NN8dX2UKGgGR0BxyEuWa+ewaAdL0mgIR0DIkXSPU8V6dX2UKGgGR0BxuX3pOerdaAdNEAFoCEdAyJF3fdAPd3V9lChoBkdAcP6W2PT5PGgHS91oCEdAyJF3e0ojOnV9lChoBkdAcuHkBjnV5WgHS/RoCEdAyJF8I3R5T3V9lChoBkdAcwhIp6QeWGgHS+poCEdAyJGn4ubqhXV9lChoBkdAcMNdeY2KmGgHS8BoCEdAyJG5qhUR4HV9lChoBkdAcZPLP2PDHmgHS8hoCEdAyJG8KpDNQnV9lChoBkdAb61CgsbvPWgHS95oCEdAyJHq1/DtPnV9lChoBkdAcjzpnHvMKWgHS/NoCEdAyJHscOskp3V9lChoBkdAcfevbXYlIGgHS7poCEdAyJHr7wazeHV9lChoBkdAcd1KEFnqV2gHS9RoCEdAyJIEwAU+LXV9lChoBkdAc1aB/7SApmgHS/ZoCEdAyJIM4EOiFnV9lChoBkdAcZFPbO/tY2gHS8ZoCEdAyJIO/GlyinV9lChoBkdAcjqbTtsvZmgHS8xoCEdAyJI6TUy57XV9lChoBkdAcE8chkiD/WgHS8poCEdAyJI9giu+y3V9lChoBkdAcIVZ9/jKgmgHS9toCEdAyJI9vqC6H3V9lChoBkdAculTg2qDLGgHS+ZoCEdAyJJQj7hvSHV9lChoBkdAcbZwosqaw2gHS+hoCEdAyJJaGjbi63V9lChoBkdAcfvFgUlAvGgHS7doCEdAyJJeTWXkYHV9lChoBkdAckR9aEBbOmgHS/BoCEdAyJJgXaakRHV9lChoBkdAbvZeY2Kl6GgHS9doCEdAyJKXFQ2uPnV9lChoBkdAcWr2A5JbuGgHS+VoCEdAyJKrCF9KEnV9lChoBkdAcGBg88s+V2gHS8RoCEdAyJK/CF9KEnV9lChoBkdAchn8hs67umgHS+BoCEdAyJLdINEw4HV9lChoBkdAcUNTKkl/pmgHS+JoCEdAyJLd/ACW/3V9lChoBkdAcJ/Du0CzTmgHS8toCEdAyJLibiIcinV9lChoBkdAcbAKg7HQyGgHS8doCEdAyJLos7uDz3V9lChoBkdAcYe90Rvm5mgHS+FoCEdAyJMBtwaR6nV9lChoBkdAcsqqrzXjEWgHS7toCEdAyJMa+hXbNHV9lChoBkdAc0al3yI552gHS9JoCEdAyJMfBoEjgXV9lChoBkdAcinINVinYWgHS9doCEdAyJMnudf9gnV9lChoBkdAcOdj4593KWgHS71oCEdAyJMm2JBPbnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 680, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.99, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "False", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}