Delete app.py
Browse files
app.py
DELETED
@@ -1,255 +0,0 @@
|
|
1 |
-
|
2 |
-
import torch
|
3 |
-
import soundfile as sf
|
4 |
-
import os
|
5 |
-
import re
|
6 |
-
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
|
7 |
-
from speechbrain.pretrained import EncoderClassifier
|
8 |
-
|
9 |
-
# Define paths and device
|
10 |
-
model_path = "HAMMALE/speecht5-darija" # Path to your model on HF Hub
|
11 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
-
print(f"Using device: {device}")
|
13 |
-
|
14 |
-
# Load models
|
15 |
-
processor = SpeechT5Processor.from_pretrained(model_path)
|
16 |
-
model = SpeechT5ForTextToSpeech.from_pretrained(model_path).to(device)
|
17 |
-
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
18 |
-
|
19 |
-
# Load speaker embedding model
|
20 |
-
speaker_model = EncoderClassifier.from_hparams(
|
21 |
-
source="speechbrain/spkrec-xvect-voxceleb",
|
22 |
-
run_opts={"device": device},
|
23 |
-
savedir=os.path.join("/tmp", "spkrec-xvect-voxceleb"),
|
24 |
-
)
|
25 |
-
|
26 |
-
# Load pre-computed speaker embeddings
|
27 |
-
male_embedding = torch.load("male_embedding.pt") if os.path.exists("male_embedding.pt") else torch.randn(1, 512)
|
28 |
-
female_embedding = torch.load("female_embedding.pt") if os.path.exists("female_embedding.pt") else torch.randn(1, 512)
|
29 |
-
|
30 |
-
# Text normalization function
|
31 |
-
def normalize_text(text):
|
32 |
-
"""Normalize text for TTS processing"""
|
33 |
-
text = text.lower()
|
34 |
-
# Keep letters, numbers, spaces and apostrophes - fixed regex
|
35 |
-
text = re.sub(r'[^\w\s\'\u0600-\u06FF]', '', text)
|
36 |
-
text = ' '.join(text.split())
|
37 |
-
return text
|
38 |
-
|
39 |
-
# Function to synthesize speech
|
40 |
-
def synthesize_speech(text, voice_type="male", speed=1.0):
|
41 |
-
"""Generate speech from text using the specified voice type"""
|
42 |
-
try:
|
43 |
-
# Select speaker embedding based on voice type
|
44 |
-
if voice_type == "male":
|
45 |
-
speaker_embeddings = male_embedding.to(device)
|
46 |
-
else:
|
47 |
-
speaker_embeddings = female_embedding.to(device)
|
48 |
-
|
49 |
-
# Normalize and tokenize input text
|
50 |
-
normalized_text = normalize_text(text)
|
51 |
-
inputs = processor(text=normalized_text, return_tensors="pt").to(device)
|
52 |
-
|
53 |
-
# Generate speech
|
54 |
-
with torch.no_grad():
|
55 |
-
speech = model.generate_speech(
|
56 |
-
inputs["input_ids"],
|
57 |
-
speaker_embeddings,
|
58 |
-
vocoder=vocoder
|
59 |
-
)
|
60 |
-
|
61 |
-
# Convert to numpy array and adjust speed if needed
|
62 |
-
speech_np = speech.cpu().numpy()
|
63 |
-
|
64 |
-
# Apply speed adjustment (simple resampling)
|
65 |
-
if speed != 1.0:
|
66 |
-
# This is a simple approach - for production use a proper resampling library
|
67 |
-
import numpy as np
|
68 |
-
from scipy import signal
|
69 |
-
sample_rate = 16000
|
70 |
-
new_length = int(len(speech_np) / speed)
|
71 |
-
speech_np = signal.resample(speech_np, new_length)
|
72 |
-
|
73 |
-
# Save temporary audio file
|
74 |
-
output_file = "output_speech.wav"
|
75 |
-
sf.write(output_file, speech_np, 16000)
|
76 |
-
|
77 |
-
return output_file, None
|
78 |
-
|
79 |
-
except Exception as e:
|
80 |
-
return None, f"Error generating speech: {str(e)}"
|
81 |
-
|
82 |
-
# Gradio imports need to be added
|
83 |
-
import gradio as gr
|
84 |
-
|
85 |
-
# Custom CSS for better design
|
86 |
-
custom_css = """
|
87 |
-
.gradio-container {
|
88 |
-
font-family: 'Poppins', 'Arial', sans-serif;
|
89 |
-
max-width: 750px;
|
90 |
-
margin: auto;
|
91 |
-
}
|
92 |
-
|
93 |
-
.main-header {
|
94 |
-
background: linear-gradient(90deg, #c31432, #240b36);
|
95 |
-
color: white;
|
96 |
-
padding: 1.5em;
|
97 |
-
border-radius: 10px;
|
98 |
-
text-align: center;
|
99 |
-
margin-bottom: 1em;
|
100 |
-
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
101 |
-
}
|
102 |
-
|
103 |
-
.main-header h1 {
|
104 |
-
font-size: 2.2em;
|
105 |
-
margin-bottom: 0.3em;
|
106 |
-
}
|
107 |
-
|
108 |
-
.main-header p {
|
109 |
-
font-size: 1.1em;
|
110 |
-
opacity: 0.9;
|
111 |
-
}
|
112 |
-
|
113 |
-
footer {
|
114 |
-
text-align: center;
|
115 |
-
margin-top: 2em;
|
116 |
-
color: #555;
|
117 |
-
font-size: 0.9em;
|
118 |
-
}
|
119 |
-
|
120 |
-
.flag-icon {
|
121 |
-
width: 24px;
|
122 |
-
height: 24px;
|
123 |
-
vertical-align: middle;
|
124 |
-
margin-right: 8px;
|
125 |
-
}
|
126 |
-
|
127 |
-
.example-header {
|
128 |
-
font-weight: bold;
|
129 |
-
color: #c31432;
|
130 |
-
margin-top: 1em;
|
131 |
-
}
|
132 |
-
|
133 |
-
.info-box {
|
134 |
-
background-color: #f9f9f9;
|
135 |
-
border-left: 4px solid #c31432;
|
136 |
-
padding: 1em;
|
137 |
-
margin: 1em 0;
|
138 |
-
border-radius: 5px;
|
139 |
-
}
|
140 |
-
|
141 |
-
.voice-selector {
|
142 |
-
display: flex;
|
143 |
-
justify-content: center;
|
144 |
-
gap: 20px;
|
145 |
-
margin: 10px 0;
|
146 |
-
}
|
147 |
-
|
148 |
-
.voice-option {
|
149 |
-
border: 2px solid #ddd;
|
150 |
-
border-radius: 10px;
|
151 |
-
padding: 10px 15px;
|
152 |
-
transition: all 0.3s ease;
|
153 |
-
cursor: pointer;
|
154 |
-
}
|
155 |
-
|
156 |
-
.voice-option.selected {
|
157 |
-
border-color: #c31432;
|
158 |
-
background-color: #fff5f5;
|
159 |
-
}
|
160 |
-
|
161 |
-
.slider-container {
|
162 |
-
margin: 20px 0;
|
163 |
-
}
|
164 |
-
"""
|
165 |
-
|
166 |
-
# Create Gradio interface with improved design
|
167 |
-
with gr.Blocks(css=custom_css) as demo:
|
168 |
-
gr.HTML(
|
169 |
-
"""
|
170 |
-
<div class="main-header">
|
171 |
-
<h1>🇲🇦 Moroccan Darija Text-to-Speech 🎧</h1>
|
172 |
-
<p>Convert Moroccan Arabic (Darija) text into natural-sounding speech</p>
|
173 |
-
</div>
|
174 |
-
"""
|
175 |
-
)
|
176 |
-
|
177 |
-
with gr.Row():
|
178 |
-
with gr.Column():
|
179 |
-
gr.HTML(
|
180 |
-
"""
|
181 |
-
<div class="info-box">
|
182 |
-
<p>This model was fine-tuned on the DODa audio dataset to produce high-quality
|
183 |
-
Darija speech from text input. You can adjust the voice and speed below.</p>
|
184 |
-
</div>
|
185 |
-
"""
|
186 |
-
)
|
187 |
-
|
188 |
-
text_input = gr.Textbox(
|
189 |
-
label="Enter Darija Text",
|
190 |
-
placeholder="Kteb chi jomla b darija hna...",
|
191 |
-
lines=3
|
192 |
-
)
|
193 |
-
|
194 |
-
with gr.Row():
|
195 |
-
voice_type = gr.Radio(
|
196 |
-
["male", "female"],
|
197 |
-
label="Voice Type",
|
198 |
-
value="male"
|
199 |
-
)
|
200 |
-
|
201 |
-
speed = gr.Slider(
|
202 |
-
minimum=0.5,
|
203 |
-
maximum=2.0,
|
204 |
-
value=1.0,
|
205 |
-
step=0.1,
|
206 |
-
label="Speech Speed"
|
207 |
-
)
|
208 |
-
|
209 |
-
generate_btn = gr.Button("Generate Speech", variant="primary")
|
210 |
-
|
211 |
-
gr.HTML(
|
212 |
-
"""
|
213 |
-
<div class="example-header">Example phrases:</div>
|
214 |
-
<ul>
|
215 |
-
<li>"Ana Nadi Bezzaaf hhh"</li>
|
216 |
-
<li>"Lyoum ajwaa zwina bezzaf."</li>
|
217 |
-
<li>"lmaghrib ahssan blad fi l3alam "</li>
|
218 |
-
</ul>
|
219 |
-
"""
|
220 |
-
)
|
221 |
-
|
222 |
-
with gr.Column():
|
223 |
-
audio_output = gr.Audio(label="Generated Speech")
|
224 |
-
error_output = gr.Textbox(label="Error (if any)", visible=False)
|
225 |
-
|
226 |
-
gr.Examples(
|
227 |
-
examples=[
|
228 |
-
["Ana Nadi Bezzaaf hhh", "male", 1.0],
|
229 |
-
["Lyoum ajwaa zwina bezzaf.", "female", 1.0],
|
230 |
-
["lmaghrib ahssan blad fi l3alam", "male", 1.0],
|
231 |
-
["Filistine hora mina lbar ila lbahr", "female", 0.8],
|
232 |
-
],
|
233 |
-
inputs=[text_input, voice_type, speed],
|
234 |
-
outputs=[audio_output, error_output],
|
235 |
-
fn=synthesize_speech
|
236 |
-
)
|
237 |
-
|
238 |
-
gr.HTML(
|
239 |
-
"""
|
240 |
-
<footer>
|
241 |
-
<p>Developed by HAMMALE | Powered by Microsoft SpeechT5 | Data: DODa</p>
|
242 |
-
</footer>
|
243 |
-
"""
|
244 |
-
)
|
245 |
-
|
246 |
-
# Set button click action
|
247 |
-
generate_btn.click(
|
248 |
-
fn=synthesize_speech,
|
249 |
-
inputs=[text_input, voice_type, speed],
|
250 |
-
outputs=[audio_output, error_output]
|
251 |
-
)
|
252 |
-
|
253 |
-
# Launch the demo
|
254 |
-
if __name__ == "__main__":
|
255 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|