File size: 13,160 Bytes
0b11a42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 |
import logging
import os
import pickle
import skorch
import torch
from skorch.dataset import Dataset, ValidSplit
from skorch.setter import optimizer_setter
from skorch.utils import is_dataset, to_device
logger = logging.getLogger(__name__)
#from ..tbWriter import writer
class Net(skorch.NeuralNet):
def __init__(
self,
clip=0.25,
top_k=1,
correct=0,
save_embedding=False,
gene_embedds=[],
second_input_embedd=[],
confidence_threshold = 0.95,
*args,
**kwargs
):
self.clip = clip
self.curr_epoch = 0
super(Net, self).__init__(*args, **kwargs)
self.correct = correct
self.save_embedding = save_embedding
self.gene_embedds = gene_embedds
self.second_input_embedds = second_input_embedd
self.main_config = kwargs["module__main_config"]
self.train_config = self.main_config["train_config"]
self.top_k = self.train_config.top_k
self.num_classes = self.main_config["model_config"].num_classes
self.labels_mapping_path = self.train_config.labels_mapping_path
if self.labels_mapping_path:
with open(self.labels_mapping_path, 'rb') as handle:
self.labels_mapping_dict = pickle.load(handle)
self.confidence_threshold = confidence_threshold
self.max_epochs = kwargs["max_epochs"]
self.task = '' #is set in utils.instantiate_predictor
self.log_tb = False
def set_save_epoch(self):
'''
scale best train epoch by valid size
'''
if self.task !='tcga':
if self.train_split:
self.save_epoch = self.main_config["train_config"].train_epoch
else:
self.save_epoch = round(self.main_config["train_config"].train_epoch*\
(1+self.main_config["valid_size"]))
def save_benchmark_model(self):
'''
saves benchmark epochs when train_split is none
'''
try:
os.mkdir("ckpt")
except:
pass
cwd = os.getcwd()+"/ckpt/"
self.save_params(f_params= f'{cwd}/model_params_{self.main_config["task"]}.pt')
def fit(self, X, y=None, valid_ds=None,**fit_params):
#all sequence lengths should be saved to compute the median based
self.all_lengths = [[] for i in range(self.num_classes)]
self.median_lengths = []
if not self.warm_start or not self.initialized_:
self.initialize()
if valid_ds:
self.validation_dataset = valid_ds
else:
self.validation_dataset = None
self.partial_fit(X, y, **fit_params)
return self
def fit_loop(self, X, y=None, epochs=None, **fit_params):
#if id then train longer otherwise stop at 0.99
rounding_digits = 3
if self.main_config['trained_on'] == 'full':
rounding_digits = 2
self.check_data(X, y)
epochs = epochs if epochs is not None else self.max_epochs
dataset_train, dataset_valid = self.get_split_datasets(X, y, **fit_params)
if self.validation_dataset is not None:
dataset_valid = self.validation_dataset.keywords["valid_ds"]
on_epoch_kwargs = {
"dataset_train": dataset_train,
"dataset_valid": dataset_valid,
}
iterator_train = self.get_iterator(dataset_train, training=True)
iterator_valid = None
if dataset_valid is not None:
iterator_valid = self.get_iterator(dataset_valid, training=False)
self.set_save_epoch()
for epoch_no in range(epochs):
#save model if training only on test set
self.curr_epoch = epoch_no
#save epoch is scaled by best train epoch
#save benchmark only when training on boith train and val sets
if self.task != 'tcga' and epoch_no == self.save_epoch and self.train_split == None:
self.save_benchmark_model()
self.notify("on_epoch_begin", **on_epoch_kwargs)
self.run_single_epoch(
iterator_train,
training=True,
prefix="train",
step_fn=self.train_step,
**fit_params
)
if dataset_valid is not None:
self.run_single_epoch(
iterator_valid,
training=False,
prefix="valid",
step_fn=self.validation_step,
**fit_params
)
self.notify("on_epoch_end", **on_epoch_kwargs)
#manual early stopping for tcga
if self.task == 'tcga':
train_acc = round(self.history[:,'train_acc'][-1],rounding_digits)
if train_acc == 1:
break
return self
def train_step(self, X, y=None):
y = X[1]
X = X[0]
sample_weights = X[:,-1]
if self.device == 'cuda':
sample_weights = sample_weights.to(self.train_config.device)
self.module_.train()
self.module_.zero_grad()
gene_embedd, second_input_embedd, activations,_,_ = self.module_(X[:,:-1],train=True)
#curr_epoch is passed to loss as it is used to switch loss criteria from unsup. -> sup
loss = self.get_loss([gene_embedd,second_input_embedd,activations,self.curr_epoch], y)
###sup loss should be X with samples weight and aggregated
loss = loss*sample_weights
loss = loss.mean()
loss.backward()
# TODO: clip only some parameters
torch.nn.utils.clip_grad_norm_(self.module_.parameters(), self.clip)
self.optimizer_.step()
return {"X":X,"y":y,"loss": loss, "y_pred": [gene_embedd,second_input_embedd,activations]}
def validation_step(self, X, y=None):
y = X[1]
X = X[0]
sample_weights = X[:,-1]
if self.device == 'cuda':
sample_weights = sample_weights.to(self.train_config.device)
self.module_.eval()
with torch.no_grad():
gene_embedd, second_input_embedd, activations,_,_ = self.module_(X[:,:-1])
loss = self.get_loss([gene_embedd,second_input_embedd,activations,self.curr_epoch], y)
###sup loss should be X with samples weight and aggregated
loss = loss*sample_weights
loss = loss.mean()
return {"X":X,"y":y,"loss": loss, "y_pred": [gene_embedd,second_input_embedd,activations]}
def get_attention_scores(self, X, y=None):
'''
returns attention scores for a given input
'''
self.module_.eval()
with torch.no_grad():
_, _, _,attn_scores_first,attn_scores_second = self.module_(X[:,:-1])
attn_scores_first = attn_scores_first.detach().cpu().numpy()
if attn_scores_second is not None:
attn_scores_second = attn_scores_second.detach().cpu().numpy()
return attn_scores_first,attn_scores_second
def predict(self, X):
self.module_.train(False)
embedds = self.module_(X[:,:-1])
sample_weights = X[:,-1]
if self.device == 'cuda':
sample_weights = sample_weights.to(self.train_config.device)
gene_embedd, second_input_embedd, activations,_,_ = embedds
if self.save_embedding:
self.gene_embedds.append(gene_embedd.detach().cpu())
#in case only a single transformer is deployed, then second_input_embedd are None. thus have no detach()
if second_input_embedd is not None:
self.second_input_embedds.append(second_input_embedd.detach().cpu())
predictions = torch.cat([activations,sample_weights[:,None]],dim=1)
return predictions
def on_epoch_end(self, net, dataset_train, dataset_valid, **kwargs):
# log gradients and weights
for _, m in self.module_.named_modules():
for pn, p in m.named_parameters():
if pn.endswith("weight") and pn.find("norm") < 0:
if p.grad != None:
if self.log_tb:
from ..callbacks.tbWriter import writer
writer.add_histogram("weights/" + pn, p, len(net.history))
writer.add_histogram(
"gradients/" + pn, p.grad.data, len(net.history)
)
return
def configure_opt(self, l2_weight_decay):
no_decay = ["bias", "LayerNorm.weight"]
params_decay = [
p
for n, p in self.module_.named_parameters()
if not any(nd in n for nd in no_decay)
]
params_nodecay = [
p
for n, p in self.module_.named_parameters()
if any(nd in n for nd in no_decay)
]
optim_groups = [
{"params": params_decay, "weight_decay": l2_weight_decay},
{"params": params_nodecay, "weight_decay": 0.0},
]
return optim_groups
def initialize_optimizer(self, triggered_directly=True):
"""Initialize the model optimizer. If ``self.optimizer__lr``
is not set, use ``self.lr`` instead.
Parameters
----------
triggered_directly : bool (default=True)
Only relevant when optimizer is re-initialized.
Initialization of the optimizer can be triggered directly
(e.g. when lr was changed) or indirectly (e.g. when the
module was re-initialized). If and only if the former
happens, the user should receive a message informing them
about the parameters that caused the re-initialization.
"""
# get learning rate from train config
optimizer_params = self.main_config["train_config"]
kwargs = {}
kwargs["lr"] = optimizer_params.learning_rate
# get l2 weight decay to init opt params
args = self.configure_opt(optimizer_params.l2_weight_decay)
if self.initialized_ and self.verbose:
msg = self._format_reinit_msg(
"optimizer", kwargs, triggered_directly=triggered_directly
)
logger.info(msg)
self.optimizer_ = self.optimizer(args, lr=kwargs["lr"])
self._register_virtual_param(
["optimizer__param_groups__*__*", "optimizer__*", "lr"],
optimizer_setter,
)
def initialize_criterion(self):
"""Initializes the criterion."""
# critereon takes train_config and model_config as an input.
# we get both from the module parameters
self.criterion_ = self.criterion(
self.main_config
)
if isinstance(self.criterion_, torch.nn.Module):
self.criterion_ = to_device(self.criterion_, self.device)
return self
def initialize_callbacks(self):
"""Initializes all callbacks and save the result in the
``callbacks_`` attribute.
Both ``default_callbacks`` and ``callbacks`` are used (in that
order). Callbacks may either be initialized or not, and if
they don't have a name, the name is inferred from the class
name. The ``initialize`` method is called on all callbacks.
The final result will be a list of tuples, where each tuple
consists of a name and an initialized callback. If names are
not unique, a ValueError is raised.
"""
if self.callbacks == "disable":
self.callbacks_ = []
return self
callbacks_ = []
class Dummy:
# We cannot use None as dummy value since None is a
# legitimate value to be set.
pass
for name, cb in self._uniquely_named_callbacks():
# check if callback itself is changed
param_callback = getattr(self, "callbacks__" + name, Dummy)
if param_callback is not Dummy: # callback itself was set
cb = param_callback
# below: check for callback params
# don't set a parameter for non-existing callback
# if the callback is lrcallback then initializa it with the train config,
# which is an input to the module
if name == "lrcallback":
params["config"] = self.main_config["train_config"]
else:
params = self.get_params_for("callbacks__{}".format(name))
if (cb is None) and params:
raise ValueError(
"Trying to set a parameter for callback {} "
"which does not exist.".format(name)
)
if cb is None:
continue
if isinstance(cb, type): # uninitialized:
cb = cb(**params)
else:
cb.set_params(**params)
cb.initialize()
callbacks_.append((name, cb))
self.callbacks_ = callbacks_
return self
|