File size: 20,574 Bytes
0b11a42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 |
#in this file, the progression of the number of hicos per major class is computed per model
#this is done before ID, after FULL.
#%%
from transforna import load
from transforna import predict_transforna,predict_transforna_all_models
import pandas as pd
import plotly.graph_objects as go
import numpy as np
def compute_overlap_models_ensemble(full_df:pd.DataFrame,mapping_dict:dict):
full_copy_df = full_df.copy()
full_copy_df['MC_Labels'] = full_copy_df['Net-Label'].map(mapping_dict)
#filter is familiar
full_copy_df = full_copy_df[full_copy_df['Is Familiar?']].set_index('Sequence')
#count the predicted miRNAs per each Model
full_copy_df.groupby('Model').MC_Labels.value_counts()
#for eaach of the models and for each of the mc classes, get the overlap between the models predicting a certain mc and the ensemble having the same prediction
models = ['Baseline','Seq','Seq-Seq','Seq-Struct','Seq-Rev']
mcs = full_copy_df.MC_Labels.value_counts().index.tolist()
mc_stats = {}
novel_resid = {}
mcs_predicted_by_only_one_model = {}
#add all mcs as keys to mc_stats and add all models as keys in every mc
for mc in mcs:
mc_stats[mc] = {}
novel_resid[mc] = {}
mcs_predicted_by_only_one_model[mc] = {}
for model in models:
mc_stats[mc][model] = 0
novel_resid[mc][model] = 0
mcs_predicted_by_only_one_model[mc][model] = 0
for mc in mcs:
ensemble_xrna = full_copy_df[full_copy_df.Model == 'Ensemble'].iloc[full_copy_df[full_copy_df.Model == 'Ensemble'].MC_Labels.str.contains(mc).values].index.tolist()
for model in models:
model_xrna = full_copy_df[full_copy_df.Model == model].iloc[full_copy_df[full_copy_df.Model == model].MC_Labels.str.contains(mc).values].index.tolist()
common_xrna = set(ensemble_xrna).intersection(set(model_xrna))
try:
mc_stats[mc][model] = len(common_xrna)/len(ensemble_xrna)
except ZeroDivisionError:
mc_stats[mc][model] = 0
#check how many sequences exist in ensemble but not in model
try:
novel_resid[mc][model] = len(set(ensemble_xrna).difference(set(model_xrna)))/len(ensemble_xrna)
except ZeroDivisionError:
novel_resid[mc][model] = 0
#check how many sequences exist in model and in ensemble but not in other models
other_models_xrna = []
for other_model in models:
if other_model != model:
other_models_xrna.extend(full_copy_df[full_copy_df.Model == other_model].iloc[full_copy_df[full_copy_df.Model == other_model].MC_Labels.str.contains(mc).values].index.tolist())
#check how many of model_xrna are not in other_models_xrna and are in ensemble_xrna
try:
mcs_predicted_by_only_one_model[mc][model] = len(set(model_xrna).difference(set(other_models_xrna)).intersection(set(ensemble_xrna)))/len(ensemble_xrna)
except ZeroDivisionError:
mcs_predicted_by_only_one_model[mc][model] = 0
return models,mc_stats,novel_resid,mcs_predicted_by_only_one_model
def plot_bar_overlap_models_ensemble(models,mc_stats,novel_resid,mcs_predicted_by_only_one_model):
#plot the result as bar plot per mc
import plotly.graph_objects as go
import numpy as np
import plotly.express as px
#square plot with mc classes on the x axis and the number of hicos on the y axis before ID, after ID, after FULL
#add cascaded bar plot for novel resid. one per mc per model
positions = np.arange(len(models))
fig = go.Figure()
for model in models:
fig.add_trace(go.Bar(
x=list(mc_stats.keys()),
y=[mc_stats[mc][model] for mc in mc_stats.keys()],
name=model,
marker_color=px.colors.qualitative.Plotly[models.index(model)]
))
fig.add_trace(go.Bar(
x=list(mc_stats.keys()),
y=[mcs_predicted_by_only_one_model[mc][model] for mc in mc_stats.keys()],
#base = [mc_stats[mc][model] for mc in mc_stats.keys()],
name = 'novel',
marker_color='lightgrey'
))
fig.update_layout(title='Overlap between Ensemble and other models per MC class')
return fig
def plot_heatmap_overlap_models_ensemble(models,mc_stats,novel_resid,mcs_predicted_by_only_one_model,what_to_plot='overlap'):
'''
This function computes a heatmap of the overlap between the ensemble and the other models per mc class
input:
models: list of models
mc_stats: dictionary with mc classes as keys and models as keys of the inner dictionary. values represent overlap between each model and the ensemble
novel_resid: dictionary with mc classes as keys and models as keys of the inner dictionary. values represent the % of sequences that are predicted by the ensemble as familiar but with specific model as novel
mcs_predicted_by_only_one_model: dictionary with mc classes as keys and models as keys of the inner dictionary. values represent the % of sequences that are predicted as familiar by only one model
what_to_plot: string. 'overlap' for overlap between ensemble and other models, 'novel' for novel resid, 'only_one_model' for mcs predicted as novel by only one model
'''
if what_to_plot == 'overlap':
plot_dict = mc_stats
elif what_to_plot == 'novel':
plot_dict = novel_resid
elif what_to_plot == 'only_one_model':
plot_dict = mcs_predicted_by_only_one_model
import plotly.figure_factory as ff
fig = ff.create_annotated_heatmap(
z=[[plot_dict[mc][model] for mc in plot_dict.keys()] for model in models],
x=list(plot_dict.keys()),
y=models,
annotation_text=[[str(round(plot_dict[mc][model],2)) for mc in plot_dict.keys()] for model in models],
font_colors=['black'],
colorscale='Blues'
)
#set x axis order
order_x_axis = ['rRNA','tRNA','snoRNA','protein_coding','snRNA','miRNA','lncRNA','piRNA','YRNA','vtRNA']
fig.update_xaxes(type='category',categoryorder='array',categoryarray=order_x_axis)
fig.update_xaxes(side='bottom')
if what_to_plot == 'overlap':
fig.update_layout(title='Overlap between Ensemble and other models per MC class')
elif what_to_plot == 'novel':
fig.update_layout(title='Novel resid between Ensemble and other models per MC class')
elif what_to_plot == 'only_one_model':
fig.update_layout(title='MCs predicted by only one model')
return fig
#%%
#read TCGA
dataset_path_train: str = '/media/ftp_share/hbdx/data_for_upload/TransfoRNA/data/TCGA__ngs__miRNA_log2RPM-24.04.0__var.csv'
models_path = '/nfs/home/yat_ldap/VS_Projects/TransfoRNA-Framework/models/tcga/'
tcga_df = load(dataset_path_train)
tcga_df.set_index('sequence',inplace=True)
loco_hico_na_stats_before = {}
loco_hico_na_stats_before['HICO'] = sum(tcga_df['hico'])/tcga_df.shape[0]
before_hico_seqs = tcga_df['subclass_name'][tcga_df['hico'] == True].index.values
loco_hico_na_stats_before['LOCO'] = (sum(tcga_df.subclass_name != 'no_annotation') - sum(tcga_df['hico']))/tcga_df.shape[0]
before_loco_seqs = tcga_df[tcga_df.hico!=True][tcga_df.subclass_name != 'no_annotation'].index.values
loco_hico_na_stats_before['NA'] = sum(tcga_df.subclass_name == 'no_annotation')/tcga_df.shape[0]
before_na_seqs = tcga_df[tcga_df.subclass_name == 'no_annotation'].index.values
#load mapping dict
mapping_dict_path: str = '/media/ftp_share/hbdx/data_for_upload/TransfoRNA//data/subclass_to_annotation.json'
mapping_dict = load(mapping_dict_path)
hico_seqs = tcga_df['subclass_name'][tcga_df['hico'] == True].index.values
hicos_mc_before_id_stats = tcga_df.loc[hico_seqs].subclass_name.map(mapping_dict).value_counts()
#remove mcs with ; in them
#hicos_mc_before_id_stats = hicos_mc_before_id_stats[~hicos_mc_before_id_stats.index.str.contains(';')]
seqs_non_hico_id = tcga_df['subclass_name'][tcga_df['hico'] == False].index.values
id_df = predict_transforna(sequences=seqs_non_hico_id,model='Seq-Rev',trained_on='id',path_to_models=models_path)
id_df = id_df[id_df['Is Familiar?']].set_index('Sequence')
#print the percentage of sequences with no_annotation and with
print('Percentage of sequences with no annotation: %s'%(id_df[id_df['Net-Label'] == 'no_annotation'].shape[0]/id_df.shape[0]))
print('Percentage of sequences with annotation: %s'%(id_df[id_df['Net-Label'] != 'no_annotation'].shape[0]/id_df.shape[0]))
#%%
hicos_mc_after_id_stats = id_df['Net-Label'].map(mapping_dict).value_counts()
#remove mcs with ; in them
#hicos_mc_after_id_stats = hicos_mc_after_id_stats[~hicos_mc_after_id_stats.index.str.contains(';')]
#add missing major classes with zeros
for mc in hicos_mc_before_id_stats.index:
if mc not in hicos_mc_after_id_stats.index:
hicos_mc_after_id_stats[mc] = 0
hicos_mc_after_id_stats = hicos_mc_after_id_stats+hicos_mc_before_id_stats
#%%
seqs_non_hico_full = list(set(seqs_non_hico_id).difference(set(id_df.index.values)))
full_df = predict_transforna_all_models(sequences=seqs_non_hico_full,trained_on='full',path_to_models=models_path)
#UNCOMMENT TO COMPUTE BEFORE AND AFTER PER MC: table_4
#ensemble_df = full_df[full_df['Model']=='Ensemble']
#ensemble_df['Major Class'] = ensemble_df['Net-Label'].map(mapping_dict)
#new_hico_mcs= ensemble_df['Major Class'].value_counts()
#ann_hico_mcs = tcga_df[tcga_df['hico'] == True]['small_RNA_class_annotation'].value_counts()
#%%%
inspect_model = True
if inspect_model:
#from transforna import compute_overlap_models_ensemble,plot_heatmap_overlap_models_ensemble
models, mc_stats, novel_resid, mcs_predicted_by_only_one_model = compute_overlap_models_ensemble(full_df,mapping_dict)
fig = plot_heatmap_overlap_models_ensemble(models,mc_stats,novel_resid,mcs_predicted_by_only_one_model,what_to_plot='overlap')
fig.show()
#%%
df = full_df[full_df.Model == 'Ensemble']
df = df[df['Is Familiar?']].set_index('Sequence')
print('Percentage of sequences with no annotation: %s'%(df[df['Is Familiar?'] == False].shape[0]/df.shape[0]))
print('Percentage of sequences with annotation: %s'%(df[df['Is Familiar?'] == True].shape[0]/df.shape[0]))
hicos_mc_after_full_stats = df['Net-Label'].map(mapping_dict).value_counts()
#remove mcs with ; in them
#hicos_mc_after_full_stats = hicos_mc_after_full_stats[~hicos_mc_after_full_stats.index.str.contains(';')]
#add missing major classes with zeros
for mc in hicos_mc_after_id_stats.index:
if mc not in hicos_mc_after_full_stats.index:
hicos_mc_after_full_stats[mc] = 0
hicos_mc_after_full_stats = hicos_mc_after_full_stats + hicos_mc_after_id_stats
# %%
#reorder the index of the series
hicos_mc_before_id_stats = hicos_mc_before_id_stats.reindex(hicos_mc_after_full_stats.index)
hicos_mc_after_id_stats = hicos_mc_after_id_stats.reindex(hicos_mc_after_full_stats.index)
#plot the progression of the number of hicos per major class, before ID, after ID, after FULL as a bar plot
#%%
#%%
training_mcs = ['rRNA','tRNA','snoRNA','protein_coding','snRNA','YRNA','lncRNA']
hicos_mc_before_id_stats_train = hicos_mc_before_id_stats[training_mcs]
hicos_mc_after_id_stats_train = hicos_mc_after_id_stats[training_mcs]
hicos_mc_after_full_stats_train = hicos_mc_after_full_stats[training_mcs]
#plot the progression of the number of hicos per major class, before ID, after ID, after FULL as a bar plot
import plotly.graph_objects as go
import numpy as np
import plotly.io as pio
import plotly.express as px
#make a square plot with mc classes on the x axis and the number of hicos on the y axis before ID, after ID, after FULL
fig = go.Figure()
fig.add_trace(go.Bar(
x=hicos_mc_before_id_stats_train.index,
y=hicos_mc_before_id_stats_train.values,
name='Before ID',
marker_color='rgb(31, 119, 180)',
opacity = 0.5
))
fig.add_trace(go.Bar(
x=hicos_mc_after_id_stats_train.index,
y=hicos_mc_after_id_stats_train.values,
name='After ID',
marker_color='rgb(31, 119, 180)',
opacity=0.75
))
fig.add_trace(go.Bar(
x=hicos_mc_after_full_stats_train.index,
y=hicos_mc_after_full_stats_train.values,
name='After FULL',
marker_color='rgb(31, 119, 180)',
opacity=1
))
#make log scale
fig.update_layout(
title='Progression of the Number of HICOs per Major Class',
xaxis_tickfont_size=14,
yaxis=dict(
title='Number of HICOs',
titlefont_size=16,
tickfont_size=14,
),
xaxis=dict(
title='Major Class',
titlefont_size=16,
tickfont_size=14,
),
legend=dict(
x=0.8,
y=1.0,
bgcolor='rgba(255, 255, 255, 0)',
bordercolor='rgba(255, 255, 255, 0)'
),
barmode='group',
bargap=0.15,
bargroupgap=0.1
)
#make transparent background
fig.update_layout(plot_bgcolor='rgba(0,0,0,0)')
#log scalew
fig.update_yaxes(type="log")
fig.update_layout(legend=dict(
yanchor="top",
y=0.99,
xanchor="left",
x=0.01
))
#tilt the x axis labels
fig.update_layout(xaxis_tickangle=22.5)
#set the range of the y axis
fig.update_yaxes(range=[0, 4.5])
fig.update_layout(legend=dict(
orientation="h",
yanchor="bottom",
y=1.02,
xanchor="right",
x=1
))
fig.write_image("progression_hicos_per_mc_train.svg")
fig.show()
#%%
eval_mcs = ['miRNA','miscRNA','piRNA','vtRNA']
hicos_mc_before_id_stats_eval = hicos_mc_before_id_stats[eval_mcs]
hicos_mc_after_full_stats_eval = hicos_mc_after_full_stats[eval_mcs]
hicos_mc_after_full_stats_eval.index = hicos_mc_after_full_stats_eval.index + '*'
hicos_mc_before_id_stats_eval.index = hicos_mc_before_id_stats_eval.index + '*'
#%%
#plot the progression of the number of hicos per major class, before ID, after ID, after FULL as a bar plot
import plotly.graph_objects as go
import numpy as np
import plotly.io as pio
import plotly.express as px
fig2 = go.Figure()
fig2.add_trace(go.Bar(
x=hicos_mc_before_id_stats_eval.index,
y=hicos_mc_before_id_stats_eval.values,
name='Before ID',
marker_color='rgb(31, 119, 180)',
opacity = 0.5
))
fig2.add_trace(go.Bar(
x=hicos_mc_after_full_stats_eval.index,
y=hicos_mc_after_full_stats_eval.values,
name='After FULL',
marker_color='rgb(31, 119, 180)',
opacity=1
))
#make log scale
fig2.update_layout(
title='Progression of the Number of HICOs per Major Class',
xaxis_tickfont_size=14,
yaxis=dict(
title='Number of HICOs',
titlefont_size=16,
tickfont_size=14,
),
xaxis=dict(
title='Major Class',
titlefont_size=16,
tickfont_size=14,
),
legend=dict(
x=0.8,
y=1.0,
bgcolor='rgba(255, 255, 255, 0)',
bordercolor='rgba(255, 255, 255, 0)'
),
barmode='group',
bargap=0.15,
bargroupgap=0.1
)
#make transparent background
fig2.update_layout(plot_bgcolor='rgba(0,0,0,0)')
#log scalew
fig2.update_yaxes(type="log")
fig2.update_layout(legend=dict(
yanchor="top",
y=0.99,
xanchor="left",
x=0.01
))
#tilt the x axis labels
fig2.update_layout(xaxis_tickangle=22.5)
#set the range of the y axis
fig2.update_yaxes(range=[0, 4.5])
#adjust bargap
fig2.update_layout(bargap=0.3)
fig2.update_layout(legend=dict(
orientation="h",
yanchor="bottom",
y=1.02,
xanchor="right",
x=1
))
#fig2.write_image("progression_hicos_per_mc_eval.svg")
fig2.show()
# %%
#append df and df_after_id
df_all_hico = df.append(id_df)
loco_hico_na_stats_after = {}
loco_hico_na_stats_after['HICO from NA'] = sum(df_all_hico.index.isin(before_na_seqs))/tcga_df.shape[0]
loco_pred_df = df_all_hico[df_all_hico.index.isin(before_loco_seqs)]
loco_anns_pd = tcga_df.loc[loco_pred_df.index].subclass_name.str.split(';',expand=True)
loco_anns_pd = loco_anns_pd.apply(lambda x: x.str.lower())
#duplicate labels in loco_pred_df * times as the num of columns in loco_anns_pd
loco_pred_labels_df = pd.DataFrame(np.repeat(loco_pred_df['Net-Label'].values,loco_anns_pd.shape[1]).reshape(loco_pred_df.shape[0],loco_anns_pd.shape[1])).set_index(loco_pred_df.index)
loco_pred_labels_df = loco_pred_labels_df.apply(lambda x: x.str.lower())
#%%
trna_mask_df = loco_pred_labels_df.apply(lambda x: x.str.contains('_trna')).any(axis=1)
trna_loco_pred_df = loco_pred_labels_df[trna_mask_df]
#get trna_loco_anns_pd
trna_loco_anns_pd = loco_anns_pd[trna_mask_df]
#for trna_loco_pred_df, remove what prepends the __ and what appends the last -
trna_loco_pred_df = trna_loco_pred_df.apply(lambda x: x.str.split('__').str[1])
trna_loco_pred_df = trna_loco_pred_df.apply(lambda x: x.str.split('-').str[:-1].str.join('-'))
#compute overlap between trna_loco_pred_df and trna_loco_anns_pd
#for every value in trna_loco_pred_df, check if is part of the corresponding position in trna_loco_anns_pd
num_hico_trna_from_loco = 0
for idx,row in trna_loco_pred_df.iterrows():
trna_label = row[0]
num_hico_trna_from_loco += trna_loco_anns_pd.loc[idx].apply(lambda x: x!=None and trna_label in x).any()
#%%
#check if 'mir' or 'let' is in any of the values per row. the columns are numbered from 0 to len(loco_anns_pd.columns)
mir_mask_df = loco_pred_labels_df.apply(lambda x: x.str.contains('mir')).any(axis=1)
let_mask_df = loco_pred_labels_df.apply(lambda x: x.str.contains('let')).any(axis=1)
mir_or_let_mask_df = mir_mask_df | let_mask_df
mir_or_let_loco_pred_df = loco_pred_labels_df[mir_or_let_mask_df]
mir_or_let_loco_anns_pd = loco_anns_pd[mir_or_let_mask_df]
#for each value in mir_or_let_loco_pred_df, if the value contains two '-', remove the last one and what comes after it
mir_or_let_loco_anns_pd = mir_or_let_loco_anns_pd.applymap(lambda x: '-'.join(x.split('-')[:-1]) if x!=None and x.count('-') == 2 else x)
mir_or_let_loco_pred_df = mir_or_let_loco_pred_df.applymap(lambda x: '-'.join(x.split('-')[:-1]) if x!=None and x.count('-') == 2 else x)
#compute overlap between mir_or_let_loco_pred_df and mir_or_let_loco_anns_pd
num_hico_mir_from_loco = sum((mir_or_let_loco_anns_pd == mir_or_let_loco_pred_df).any(axis=1))
#%%
#get rest_loco_anns_pd
rest_loco_pred_df = loco_pred_labels_df[~mir_or_let_mask_df & ~trna_mask_df]
rest_loco_anns_pd = loco_anns_pd[~mir_or_let_mask_df & ~trna_mask_df]
num_hico_bins_from_loco = 0
for idx,row in rest_loco_pred_df.iterrows():
rest_rna_label = row[0].split('-')[0]
try:
bin_no = int(row[0].split('-')[1])
except:
continue
num_hico_bins_from_loco += rest_loco_anns_pd.loc[idx].apply(lambda x: x!=None and rest_rna_label == x.split('-')[0] and abs(int(x.split('-')[1])- bin_no)<=1).any()
loco_hico_na_stats_after['HICO from LOCO'] = (num_hico_trna_from_loco + num_hico_mir_from_loco + num_hico_bins_from_loco)/tcga_df.shape[0]
loco_hico_na_stats_after['LOCO from NA'] = loco_hico_na_stats_before['NA'] - loco_hico_na_stats_after['HICO from NA']
loco_hico_na_stats_after['LOCO from LOCO'] = loco_hico_na_stats_before['LOCO'] - loco_hico_na_stats_after['HICO from LOCO']
loco_hico_na_stats_after['HICO'] = loco_hico_na_stats_before['HICO']
# %%
import plotly.graph_objects as go
import plotly.io as pio
import plotly.express as px
color_mapping = {}
for key in loco_hico_na_stats_before.keys():
if key.startswith('HICO'):
color_mapping[key] = "rgb(51,160,44)"
elif key.startswith('LOCO'):
color_mapping[key] = "rgb(178,223,138)"
else:
color_mapping[key] = "rgb(251,154,153)"
colors = list(color_mapping.values())
fig = go.Figure(data=[go.Pie(labels=list(loco_hico_na_stats_before.keys()), values=list(loco_hico_na_stats_before.values()),hole=.0,marker=dict(colors=colors),sort=False)])
fig.update_layout(title='Percentage of HICOs, LOCOs and NAs before ID')
fig.show()
#save figure as svg
#fig.write_image("pie_chart_before_id.svg")
# %%
color_mapping = {}
for key in loco_hico_na_stats_after.keys():
if key.startswith('HICO'):
color_mapping[key] = "rgb(51,160,44)"
elif key.startswith('LOCO'):
color_mapping[key] = "rgb(178,223,138)"
loco_hico_na_stats_after = {k: loco_hico_na_stats_after[k] for k in sorted(loco_hico_na_stats_after, key=lambda k: k.startswith('HICO'), reverse=True)}
fig = go.Figure(data=[go.Pie(labels=list(loco_hico_na_stats_after.keys()), values=list(loco_hico_na_stats_after.values()),hole=.0,marker=dict(colors=list(color_mapping.values())),sort=False)])
fig.update_layout(title='Percentage of HICOs, LOCOs and NAs after ID')
fig.show()
#save figure as svg
#fig.write_image("pie_chart_after_id.svg")
|