File size: 11,035 Bytes
0b11a42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import logging
import os
from pathlib import Path

import numpy as np
import pandas as pd
import torch
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from sklearn.utils.class_weight import (compute_class_weight,
                                        compute_sample_weight)
from skorch.dataset import Dataset
from skorch.helper import predefined_split

from ..utils.energy import fold_sequences
from ..utils.file import load, save
from ..utils.utils import (revert_seq_tokenization,
                           update_config_with_dataset_params_benchmark,
                           update_config_with_dataset_params_tcga)
from anndata import AnnData

logger = logging.getLogger(__name__)
class DataSplitter:
    def __init__(self,tokenizer,configs):
        self.tokenizer = tokenizer
        self.configs = configs
        self.seed = configs.seed
        self.trained_on = configs.trained_on
        self.device = configs["train_config"].device
        self.splits_df_dict = {}
        self.min_num_samples_per_class = 10

    def convert_to_tensor(self,in_arr,convert_type):
        tensor_dtype = torch.long if convert_type == int else torch.float
        return torch.tensor(
            np.array(in_arr, dtype=convert_type),
            dtype=tensor_dtype,
        ).to(device=self.device)
    
    def get_features_per_split(self):
        model_input_cols = ['tokens_id','second_input','seqs_length']
        features_dict = {}
        for split_df in self.splits_df_dict.keys():
            split_data = self.convert_to_tensor(self.splits_df_dict[split_df][model_input_cols].values,convert_type=float)
            split = '_'.join(split_df.split('_')[:-1])
            features_dict[f'{split}_data'] = split_data

        return features_dict
    
    def append_sample_weights(self,splits_features_dict):

        for split_df in self.splits_df_dict.keys():
            if split_df in ['train_df','valid_df','test_df']:
                split_weights =  self.convert_to_tensor(compute_sample_weight('balanced',self.splits_df_dict[split_df]['Labels'][0]),convert_type=float)
            else:
                split_weights = self.convert_to_tensor(np.ones(self.splits_df_dict[split_df].shape[0]),convert_type=float)
            split = '_'.join(split_df.split('_')[:-1])
            splits_features_dict[f'{split}_data'] = torch.cat([splits_features_dict[f'{split}_data'],split_weights[:,None]],dim=1)   

        return

    def get_labels_per_split(self):
        #encode labels 
        enc = LabelEncoder()
        enc.fit(self.splits_df_dict["train_df"]['Labels'])
        #save mapping dict to config
        self.configs["model_config"].class_mappings = enc.classes_.tolist()

        labels_dict = {}
        labels_numeric_dict = {}
        for split_df in self.splits_df_dict.keys():
            split = '_'.join(split_df.split('_')[:-1])

            split_labels = self.splits_df_dict[split_df]['Labels']
            if split_df in ['train_df','valid_df','test_df']:
                split_labels_numeric = self.convert_to_tensor(enc.transform(split_labels), convert_type=int)
            else:
                split_labels_numeric = self.convert_to_tensor(np.zeros((split_labels.shape[0])), convert_type=int)
            
            labels_dict[f'{split}_labels'] = split_labels
            labels_numeric_dict[f'{split}_labels_numeric'] = split_labels_numeric
        
        #compute class weight
        class_weights = compute_class_weight(class_weight='balanced',classes=np.unique(labels_dict['train_labels']),y=labels_dict['train_labels'][0].values)
        
        #omegaconfig does not support float64 as datatype so conversion to str is done 
        # and reconversion is done in criterion
        self.configs['model_config'].class_weights = [str(x) for x in list(class_weights)]


        return labels_dict | labels_numeric_dict
    

    def get_seqs_per_split(self):
        rna_seq_dict = {}
        for split_df in self.splits_df_dict.keys():
            split = '_'.join(split_df.split('_')[:-1])
            rna_seq_dict[f'{split}_rna_seq'] = revert_seq_tokenization(self.splits_df_dict[split_df]["tokens"],self.configs)

        return rna_seq_dict

    def duplicate_fewer_classes(self,df):
        #get quantity of each class and append it as a column
        df["Quantity",'0'] = df["Labels"].groupby([0])[0].transform("count")
        frequent_samples_df = df[df["Quantity",'0'] >= self.min_num_samples_per_class].reset_index(drop=True)
        fewer_samples_df = df[df["Quantity",'0'] < self.min_num_samples_per_class].reset_index(drop=True)
        unique_fewer_samples_df = fewer_samples_df.drop_duplicates(subset=[('Labels',0)], keep="last")
        unique_fewer_samples_df['Quantity','0'] -= self.min_num_samples_per_class
        unique_fewer_samples_df['Quantity','0'] = unique_fewer_samples_df['Quantity','0'].abs()
        repeated_fewer_samples_df = unique_fewer_samples_df.loc[unique_fewer_samples_df.index.repeat(unique_fewer_samples_df.Quantity['0'])]
        repeated_fewer_samples_df = repeated_fewer_samples_df.reset_index(drop=True)
        df = frequent_samples_df.append(repeated_fewer_samples_df).append(fewer_samples_df).reset_index(drop=True)
        df.drop(columns = ['Quantity'],inplace=True)
        return df

    def remove_fewer_samples(self,data_df):
        if 'sub_class' in self.configs['model_config']['clf_target']:
            counts = data_df['Labels'].value_counts()
            fewer_class_ids = counts[counts < self.min_num_samples_per_class].index
            fewer_class_labels = [i[0]  for i in fewer_class_ids]
        elif 'major_class' in self.configs['model_config']['clf_target']:
            #insure that major classes are the same as the one used when training for sub_class
            #this is done for performance comparisons to be valid
            #otherwise major class models would be trained on more major classes than sub_class models
            tcga_df = load(self.configs['train_config'].dataset_path_train)
            #only keep hico
            tcga_df = tcga_df[tcga_df['hico'] == True]
            if isinstance(tcga_df,AnnData):
                tcga_df = tcga_df.var
            #get subclass_name with samples higher than self.min_num_samples_per_class
            counts = tcga_df['subclass_name'].value_counts()
            all_subclasses = tcga_df['subclass_name'].unique()
            selected_subclasses = counts[counts >= self.min_num_samples_per_class].index
            #convert subclass_name to major_class
            subclass_to_major_class_dict = load(self.configs['train_config'].mapping_dict_path)
            all_major_classes = list(set([subclass_to_major_class_dict[sub_class]  for sub_class in all_subclasses]))
            selected_major_classes = list(set([subclass_to_major_class_dict[sub_class] for sub_class in selected_subclasses]))
            fewer_class_labels = list(set(all_major_classes) - set(selected_major_classes))

        #remove samples with major_class not in major_classes
        fewer_samples_per_class_df = data_df.loc[data_df['Labels'].isin(fewer_class_labels).values, :]
        fewer_ids = data_df.index.isin(fewer_samples_per_class_df.index)
        data_df = data_df[~fewer_ids]
        return fewer_samples_per_class_df,data_df

    def split_tcga(self,data_df):
        #remove artificial_affix
        artificial_df = data_df.loc[data_df['Labels'][0].isin(['random','recombined','artificial_affix'])]
        art_ids = data_df.index.isin(artificial_df.index)
        data_df = data_df[~art_ids]
        data_df = data_df.reset_index(drop=True)

        #remove no annotations
        no_annotaton_df = data_df.loc[data_df['Labels'].isnull().values]
        n_a_ids = data_df.index.isin(no_annotaton_df.index)
        data_df = data_df[~n_a_ids].reset_index(drop=True)
        no_annotaton_df = no_annotaton_df.reset_index(drop=True)

        if self.trained_on == 'full':
            #duplication is done to ensure as other wise train_test_split will fail
            data_df = self.duplicate_fewer_classes(data_df)
            ood_dict = {}
        else:
            ood_df,data_df = self.remove_fewer_samples(data_df)
            ood_dict = {"ood_df":ood_df}
        #split data
        train_df,valid_test_df = train_test_split(data_df,stratify=data_df["Labels"],train_size=0.8,random_state=self.seed)
        if self.trained_on == 'id':
            valid_df,test_df = train_test_split(valid_test_df,stratify=valid_test_df["Labels"],train_size=0.5,random_state=self.seed)
        else:
            #we need to use all n sequences in the training set, however, unseen samples should be gathered for training novelty prediction,
            #otherwise NLD for test would be zero
            #remove one sample from each class to test_df
            test_df = valid_test_df.drop_duplicates(subset=[('Labels',0)], keep="last")
            test_ids = valid_test_df.index.isin(test_df.index)
            valid_df = valid_test_df[~test_ids].reset_index(drop=True)
            train_df = train_df.append(valid_df).reset_index(drop=True)

        self.splits_df_dict =  {"train_df":train_df,"valid_df":valid_df,"test_df":test_df,"artificial_df":artificial_df,"no_annotation_df":no_annotaton_df} | ood_dict

    def prepare_data_tcga(self):
        """
        This function recieves tokenizer and prepares the data in a format suitable for training
        It also set default parameters in the config that cannot be known until preprocessing step
        is done.
        """
        all_data_df = self.tokenizer.get_tokenized_data()

        #split data 
        self.split_tcga(all_data_df)

        num_samples = self.splits_df_dict['train_df'].shape[0]
        num_classes = len(self.splits_df_dict['train_df'].Labels.value_counts()[self.splits_df_dict['train_df'].Labels.value_counts()>0])
        #log
        logger.info(f'Training with {num_classes} classes and {num_samples} samples')

        #get features, labels, and seqs per split
        splits_features_dict = self.get_features_per_split()
        self.append_sample_weights(splits_features_dict)
        splits_labels_dict = self.get_labels_per_split()
        splits_seqs_dict = self.get_seqs_per_split()

        
        #prepare validation set for skorch
        valid_ds = Dataset(splits_features_dict["valid_data"],splits_labels_dict["valid_labels_numeric"])
        valid_ds = predefined_split(valid_ds)

        #combine all dicts
        all_data = splits_features_dict | splits_labels_dict | splits_seqs_dict | \
            {"valid_ds":valid_ds}

        ###update self.configs
        update_config_with_dataset_params_tcga(self.tokenizer,all_data_df,self.configs)
        self.configs["model_config"].num_classes = len(all_data['train_labels'][0].unique())
        self.configs["train_config"].batch_per_epoch = int(all_data["train_data"].shape[0]\
            /self.configs["train_config"].batch_size)

        return all_data