File size: 13,728 Bytes
0b11a42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
import logging
import os
import pickle
from typing import Dict

import numpy as np
import pandas as pd
import skorch
import torch
import torch.nn as nn
from sklearn.metrics import confusion_matrix

from ..utils.file import save

logger = logging.getLogger(__name__)

def load_pkl(name ):
    with open(name + '.pkl', 'rb') as f:
        return pickle.load(f)
    
def infere_additional_test_data(net,data):
    '''
    The premirna task has an additional dataset containing premirna from different species
    This function computes the accuracy score on this additional test set
    All samples in the additional test data are precurosr mirnas
    '''
    for dataset_idx in range(len(data)):
        predictions = net.predict(data[dataset_idx])
        correct = sum(torch.max(predictions,1).indices)
        total = len(torch.max(predictions,1).indices)
        logger.info(f'The prediction on the {dataset_idx} dataset is {correct} out of {total}')

def get_rna_seqs(seq, model_config):
    rna_seqs = []
    if model_config.tokenizer == "no_overlap":
        for _, row in seq.iterrows():
            rna_seqs.append("".join(x for x in row if x != "pad"))
    else:
        rna_seqs_overlap = []
        for _, row in seq.iterrows():
            # remove the paddings
            rna_seqs_overlap.append([x for x in row if x != "pad"])
            # join the beg of each char in rna_seqs_overlap
            rna_seqs.append("".join(x[0] for x in rna_seqs_overlap[-1]))
            # append the last token w/o its first char
            rna_seqs[-1] = "".join(rna_seqs[-1] + rna_seqs_overlap[-1][-1][1:])

    return rna_seqs

def save_embedds(net,path:str,rna_seq,split:str='train',labels:pd.DataFrame=None,model_config = None,logits=None):
    #reconstruct seqs
    # join sequence and remove pads
    rna_seqs = get_rna_seqs(rna_seq, model_config)

     # create pandas dataframe  of sequences
    iterables = [["RNA Sequences"], np.arange(1, dtype=int)]
    index = pd.MultiIndex.from_product(iterables, names=["type of data", "indices"])
    rna_seqs_df = pd.DataFrame(columns=index, data=np.vstack(rna_seqs))

    data=np.vstack(net.gene_embedds)
     # create pandas dataframe  for token ids of sequences
    iterables = [["RNA Embedds"], np.arange((data.shape[1]), dtype=int)]
    index = pd.MultiIndex.from_product(iterables, names=["type of data", "indices"])
    gene_embedd_df = pd.DataFrame(columns=index, data=data)

    if 'baseline' not in model_config.model_input:
        data = np.vstack(net.second_input_embedds)
        iterables = [["SI Embedds"], np.arange(data.shape[1], dtype=int)]
        index = pd.MultiIndex.from_product(iterables, names=["type of data", "indices"])
        exp_embedd_df = pd.DataFrame(columns=index, data=data)
    else:
        exp_embedd_df = []

    iterables = [["Labels"], np.arange(1, dtype=int)]
    index = pd.MultiIndex.from_product(iterables, names=["type of data", "indices"])
    labels_df = pd.DataFrame(columns=index, data=labels.values)

    if logits:
        iterables = [["Logits"], model_config.class_mappings]
        index = pd.MultiIndex.from_product(iterables, names=["type of data", "indices"])
        logits_df = pd.DataFrame(columns=index, data=np.array(logits))

        final_csv = rna_seqs_df.join(gene_embedd_df).join(exp_embedd_df).join(labels_df).join(logits_df)
    else:
        final_csv = rna_seqs_df.join(gene_embedd_df).join(exp_embedd_df).join(labels_df)

    save(data=final_csv,path =f'{path}{split}_embedds')
    

def infer_from_model(net,split_data:torch.Tensor):
    batch_size = 100
    predicted_labels_str = []
    soft = nn.Softmax()
    logits = []
    attn_scores_first_list = []
    attn_scores_second_list = []
    #this dict will be used to convert between neumeric predictions and string labels
    labels_mapping_dict = net.labels_mapping_dict
    #switch labels and str_labels
    labels_mapping_dict = {y:x for x,y in labels_mapping_dict.items()}
    for idx,batch in enumerate(torch.split(split_data, batch_size)):
        predictions = net.predict(batch)
        attn_scores_first,attn_scores_second = net.get_attention_scores(batch)
        predictions = predictions[:,:-1]

        max_ids_tensor = torch.max(predictions,1).indices
        if max_ids_tensor.is_cuda:
            max_ids_tensor = max_ids_tensor.cpu().numpy()
        predicted_labels_str.extend([labels_mapping_dict[x] for x in max_ids_tensor.tolist()])

        logits.extend(soft(predictions).detach().cpu().numpy())
        
        attn_scores_first_list.extend(attn_scores_first)
        if attn_scores_second is not None:
            attn_scores_second_list.extend(attn_scores_second)

    return predicted_labels_str,logits,attn_scores_first_list,attn_scores_second_list

def get_split_score(net,split_data:torch.Tensor,split_labels:torch.Tensor,split:str,scoring_function:Dict,task:str=None,log_split_str_labels:bool=False,mirna_flag:bool = None):
    split_acc = []
    batch_size = 100
    predicted_labels_str = []
    true_labels_str = []
    #this dict will be used to convert between neumeric predictions and string labels
    labels_mapping_dict = net.labels_mapping_dict
    #switch labels and str_labels
    labels_mapping_dict = {y:x for x,y in labels_mapping_dict.items()}
    for idx,batch in enumerate(torch.split(split_data, batch_size)):
        predictions = net.predict(batch)
        if split_labels is not None:
            true_labels = torch.split(split_labels,batch_size)[idx]
            if mirna_flag is not None:
                batch_score = scoring_function(true_labels.numpy(), predictions,task=task,mirna_flag=mirna_flag)
                batch_score /= sum(true_labels.numpy().squeeze() == mirna_flag)
            else:
                batch_score = scoring_function(true_labels.numpy(), predictions,task=task)
            split_acc.append(batch_score)

        if log_split_str_labels:
            #save true labels
            if split_labels is not None:
                true_labels_str.extend([labels_mapping_dict[x[0]] for x in true_labels.numpy().tolist()])
        predicted_labels_str.extend([labels_mapping_dict[x] for x in torch.max(predictions[:,:-1],1).indices.cpu().numpy().tolist()])
    
    if log_split_str_labels:
        #save all true and predicted labels to compute metrics on
        if split_labels is not None:
            with open(f"true_labels_{split}.pkl", "wb") as fp:  
                pickle.dump(true_labels_str, fp)

        with open(f"predicted_labels_{split}.pkl", "wb") as fp: 
            pickle.dump(predicted_labels_str, fp)

    
    if split_labels is not None:
        split_score = sum(split_acc)/len(split_acc)
        if mirna_flag is not None:
            logger.info(f"{split} accuracy score is {split_score} for mirna: {mirna_flag}")
    else:
        #only for inference
        split_score = None
            
        logger.info(f"{split} accuracy score is {split_score}")
    
    return split_score,predicted_labels_str

def generate_embedding(net, path:str,accuracy_sore,data, data_seq,labels,labels_numeric,split,model_config=None,train_config=None,log_embedds:bool=False):

    predictions_per_split = []   
    accuracy = []
    logits = []
    weights_per_batch = []
    data = torch.cat((data.T,labels_numeric.unsqueeze(1).T)).T
    for batch in torch.split(data, train_config.batch_size):
        weights_per_batch.append(batch.shape[0])
        predictions = net.predict(batch[:,:-1])
        soft = nn.Softmax(dim=1)
        logits.extend(list(soft(predictions[:,:-1]).detach().cpu().tolist()))

        accuracy.append(accuracy_sore(batch[:,-1], predictions))
        
        #drop sample weights
        predictions = predictions[:,:-1]

        predictions = torch.argmax(predictions,axis=1)
        predictions_per_split.extend(predictions.tolist())

    if split == 'test':
        matrix = confusion_matrix(labels_numeric.tolist(), predictions_per_split)
        #get the worst predicted classes
        worst_predicted_classes = np.argsort(matrix.diagonal())[:40]
        best_predicted_classes = np.argsort(matrix.diagonal())[-40:]
        #first get the mapping dict from labels_numeric tensor and labels containing string labels
        mapping_dict = {}
        for idx,label in enumerate(labels_numeric.tolist()):
            mapping_dict[label] = labels.values[idx][0]
        #convert worst_predicted_classes to string labels
        worst_predicted_classes = [mapping_dict[x] for x in worst_predicted_classes]
        #save worst predicted classes as csv
        pd.DataFrame(worst_predicted_classes).to_csv(f"{path}worst_predicted_classes.csv")

        #check how many files in path start with confusion_matrix
        num_confusion_matrix = len([name for name in os.listdir(path) if name.startswith("confusion_matrix")])
        #save confusion matrix
        cf = pd.DataFrame(matrix)
        #rename cf columns to be the labels by first ordering the mapping dict by the keys
        cf.columns = [mapping_dict[x] for x in sorted(mapping_dict.keys())]
        cf.index = cf.columns
        cf.to_csv(f"{path}confusion_matrix_{num_confusion_matrix}.csv")


    score_avg = 0
    if split in ['train','valid','test']:
        score_avg = np.average(accuracy,weights = weights_per_batch)
        logger.info(f"total accuracy score on {split} is {np.round(score_avg,4)}")

    
    if log_embedds:
        logger.debug(f"logging embedds for {split} set")
        save_embedds(net,path,data_seq,split,labels,model_config,logits)

    return score_avg



def compute_score_tcga(
    net, all_data, path,cfg:Dict
):
    task = cfg['task']
    net.load_params(f_params=f'{path}/ckpt/model_params_{task}.pt')
    net.save_embedding = True

    #create path for embedds and confusion matrix
    embedds_path = path+"/embedds/"
    if not os.path.exists(embedds_path):
        os.mkdir(embedds_path)
    
    #get scoring function
    for cb in net.callbacks:
        if type(cb) == skorch.callbacks.scoring.BatchScoring:
            scoring_function = cb.scoring._score_func
            break

    splits = ['train','valid','test','ood','no_annotation','artificial']

    test_score = 0
    #log all splits
    for split in splits:
        # reset tensors
        net.gene_embedds = []
        net.second_input_embedds = []
        try:
            score = generate_embedding(net,embedds_path,scoring_function,all_data[f"{split}_data"],all_data[f"{split}_rna_seq"],\
                                all_data[f"{split}_labels"],all_data[f"{split}_labels_numeric"],f'{split}',\
                                    cfg['model_config'],cfg['train_config'],cfg['log_embedds'])
            if split == 'test':
                test_score = score
        except:
            trained_on = cfg['trained_on']
            logger.info(f'Skipping {split} split, as split does not exist for models trained on {trained_on}!')
            
        
            
    return test_score
        




def compute_score_benchmark(
    net, path,all_data,scoring_function:Dict, cfg:Dict
):
    task = cfg['task']
    net.load_params(f_params=f'{path}/ckpt/model_params_{task}.pt')
    net.save_embedding = True
    # reset tensors
    net.gene_embedds = []
    net.second_input_embedds = []

    if task == 'premirna':
        get_split_score(net,all_data["train_data"],all_data["train_labels_numeric"],'train',scoring_function,task,mirna_flag = 0)
        get_split_score(net,all_data["train_data"],all_data["train_labels_numeric"],'train',scoring_function,task,mirna_flag = 1)
    else:
        get_split_score(net,all_data["train_data"],all_data["train_labels_numeric"],'train',scoring_function,task)

    embedds_path = path+"/embedds/"
    if not os.path.exists(embedds_path):
        os.mkdir(embedds_path)
    if cfg['log_embedds']:
        torch.save(torch.vstack(net.gene_embedds), embedds_path+"train_gene_embedds.pt")
        torch.save(torch.vstack(net.second_input_embedds), embedds_path+"train_gene_exp_embedds.pt")
        all_data["train_rna_seq"].to_pickle(embedds_path+"train_rna_seq.pkl")

    # reset tensors
    net.gene_embedds = []
    net.second_input_embedds = []
    if task == 'premirna':
        test_score_0,_ = get_split_score(net,all_data["test_data"],all_data["test_labels_numeric"],'test',scoring_function,task,mirna_flag = 0)
        test_score_1,_ = get_split_score(net,all_data["test_data"],all_data["test_labels_numeric"],'test',scoring_function,task,mirna_flag = 1)
        test_score = (test_score_0+test_score_1)/2
    else:
        test_score,_ = get_split_score(net,all_data["test_data"],all_data["test_labels_numeric"],'test',scoring_function,task)

    if cfg['log_embedds']:
        torch.save(torch.vstack(net.gene_embedds), embedds_path+"test_gene_embedds.pt")
        torch.save(torch.vstack(net.second_input_embedds), embedds_path+"test_gene_exp_embedds.pt")
        all_data["test_rna_seq"].to_pickle(embedds_path+"test_rna_seq.pkl")
    return test_score



def infer_testset(net,cfg,all_data,accuracy_score):
    if cfg["task"] == 'premirna':
            split_score,predicted_labels_str = get_split_score(net,all_data["test_data"],all_data["test_labels"],'test',accuracy_score,cfg["task"],mirna_flag = 0)
            split_score,predicted_labels_str = get_split_score(net,all_data["test_data"],all_data["test_labels"],'test',accuracy_score,cfg["task"],mirna_flag = 1)
    else:
        split_score,predicted_labels_str = get_split_score(net,all_data["test_data"],all_data["test_labels_numeric"],'test',\
        accuracy_score,cfg["task"],log_split_str_labels = True)
        #only for premirna
    if "additional_testset" in all_data:
        infere_additional_test_data(net,all_data["additional_testset"])