Seq-TransfoRNA / transforna /src /model /model_components.py
Yak-hbdx's picture
uploaded TransfoRNA repo
0b11a42 verified
raw
history blame
18.7 kB
import logging
import math
import random
from typing import Dict, Optional
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from omegaconf import DictConfig
from torch.nn.modules.normalization import LayerNorm
logger = logging.getLogger(__name__)
def circulant_mask(n: int, window: int) -> torch.Tensor:
"""Calculate the relative attention mask, calculated once when model instatiated, as a subset of this matrix
will be used for a input length less than max.
i,j represent relative token positions in this matrix and in the attention scores matrix,
this mask enables attention scores to be set to 0 if further than the specified window length
:param n: a fixed parameter set to be larger than largest max sequence length across batches
:param window: [window length],
:return relative attention mask
"""
circulant_t = torch.zeros(n, n)
# [0, 1, 2, ..., window, -1, -2, ..., window]
offsets = [0] + [i for i in range(window + 1)] + [-i for i in range(window + 1)]
if window >= n:
return torch.ones(n, n)
for offset in offsets:
# size of the 1-tensor depends on the length of the diagonal
circulant_t.diagonal(offset=offset).copy_(torch.ones(n - abs(offset)))
return circulant_t
class SelfAttention(nn.Module):
"""normal query, key, value based self attention but with relative attention functionality
and a learnable bias encoding relative token position which is added to the attention scores before the softmax"""
def __init__(self, config: DictConfig, relative_attention: int):
"""init self attention weight of each key, query, value and output projection layer.
:param config: model config
:type config: ConveRTModelConfig
"""
super().__init__()
self.config = config
self.query = nn.Linear(config.num_embed_hidden, config.num_attention_project)
self.key = nn.Linear(config.num_embed_hidden, config.num_attention_project)
self.value = nn.Linear(config.num_embed_hidden, config.num_attention_project)
self.softmax = nn.Softmax(dim=-1)
self.output_projection = nn.Linear(
config.num_attention_project, config.num_embed_hidden
)
self.bias = torch.nn.Parameter(torch.randn(config.n), requires_grad=True)
stdv = 1.0 / math.sqrt(self.bias.data.size(0))
self.bias.data.uniform_(-stdv, stdv)
self.relative_attention = relative_attention
self.n = self.config.n
self.half_n = self.n // 2
self.register_buffer(
"relative_mask",
circulant_mask(config.tokens_len, self.relative_attention),
)
def forward(
self, attn_input: torch.Tensor, attention_mask: torch.Tensor
) -> torch.Tensor:
"""calculate self-attention of query, key and weighted to value at the end.
self-attention input is projected by linear layer at the first time.
applying attention mask for ignore pad index attention weight. Relative attention mask
applied and a learnable bias added to the attention scores.
return value after apply output projection layer to value * attention
:param attn_input: [description]
:type attn_input: [type]
:param attention_mask: [description], defaults to None
:type attention_mask: [type], optional
:return: [description]
:rtype: [type]
"""
self.T = attn_input.size()[1]
# input is B x max seq len x n_emb
_query = self.query.forward(attn_input)
_key = self.key.forward(attn_input)
_value = self.value.forward(attn_input)
# scaled dot product
attention_scores = torch.matmul(_query, _key.transpose(1, 2))
attention_scores = attention_scores / math.sqrt(
self.config.num_attention_project
)
# Relative attention
# extended_attention_mask = attention_mask.to(attention_scores.device) # fp16 compatibility
extended_attention_mask = (1.0 - attention_mask.unsqueeze(-1)) * -10000.0
attention_scores = attention_scores + extended_attention_mask
# fix circulant_matrix to matrix of size 60 x60 (max token truncation_length,
# register as buffer, so not keep creating masks of different sizes.
attention_scores = attention_scores.masked_fill(
self.relative_mask.unsqueeze(0)[:, : self.T, : self.T] == 0, float("-inf")
)
# Learnable bias vector is used of max size,for each i, different subsets of it are added to the scores, where the permutations
# depend on the relative position (i-j). this way cleverly allows no loops. bias vector is 2*max truncation length+1
# so has a learnable parameter for each eg. (i-j) /in {-60,...60} .
ii, jj = torch.meshgrid(torch.arange(self.T), torch.arange(self.T))
B_matrix = self.bias[self.n // 2 - ii + jj]
attention_scores = attention_scores + B_matrix.unsqueeze(0)
attention_scores = self.softmax(attention_scores)
output = torch.matmul(attention_scores, _value)
output = self.output_projection(output)
return [output,attention_scores] # B x T x num embed hidden
class FeedForward1(nn.Module):
def __init__(
self, input_hidden: int, intermediate_hidden: int, dropout_rate: float = 0.0
):
# 512 2048
super().__init__()
self.linear_1 = nn.Linear(input_hidden, intermediate_hidden)
self.dropout = nn.Dropout(dropout_rate)
self.linear_2 = nn.Linear(intermediate_hidden, input_hidden)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = F.gelu(self.linear_1(x))
return self.linear_2(self.dropout(x))
class SharedInnerBlock(nn.Module):
def __init__(self, config: DictConfig, relative_attn: int):
super().__init__()
self.config = config
self.self_attention = SelfAttention(config, relative_attn)
self.norm1 = LayerNorm(config.num_embed_hidden) # 512
self.dropout = nn.Dropout(config.dropout)
self.ff1 = FeedForward1(
config.num_embed_hidden, config.feed_forward1_hidden, config.dropout
)
self.norm2 = LayerNorm(config.num_embed_hidden)
def forward(self, x: torch.Tensor, attention_mask: int) -> torch.Tensor:
new_values_x,attn_scores = self.self_attention(x, attention_mask=attention_mask)
x = x+new_values_x
x = self.norm1(x)
x = x + self.ff1(x)
return self.norm2(x),attn_scores
# pretty basic, just single head. but done many times, stack to have another dimension (4 with batches).# so get stacks of B x H of attention scores T x T..
# then matrix multiply these extra stacks with the v
# (B xnh)x T xT . (Bx nh xTx hs) gives (B Nh) T x hs stacks. now hs is set to be final dimension/ number of heads, so reorder the stacks (concatenating them)
# can have optional extra projection layer, but doing that later
class MultiheadAttention(nn.Module):
def __init__(self, config: DictConfig):
super().__init__()
self.num_attention_heads = config.num_attention_heads
self.num_attn_proj = config.num_embed_hidden * config.num_attention_heads
self.attention_head_size = int(self.num_attn_proj / self.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.num_embed_hidden, self.num_attn_proj)
self.key = nn.Linear(config.num_embed_hidden, self.num_attn_proj)
self.value = nn.Linear(config.num_embed_hidden, self.num_attn_proj)
self.dropout = nn.Dropout(config.dropout)
def forward(
self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None
) -> torch.Tensor:
B, T, _ = hidden_states.size()
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
k = (
self.key(hidden_states)
.view(B, T, self.num_attention_heads, self.attention_head_size)
.transpose(1, 2)
) # (B, nh, T, hs)
q = (
self.query(hidden_states)
.view(B, T, self.num_attention_heads, self.attention_head_size)
.transpose(1, 2)
) # (B, nh, T, hs)
v = (
self.value(hidden_states)
.view(B, T, self.num_attention_heads, self.attention_head_size)
.transpose(1, 2)
) # (B, nh, T, hs)
attention_scores = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
if attention_mask is not None:
attention_mask = attention_mask[:, None, None, :]
attention_mask = (1.0 - attention_mask) * -10000.0
attention_scores = attention_scores + attention_mask
attention_scores = F.softmax(attention_scores, dim=-1)
attention_scores = self.dropout(attention_scores)
y = attention_scores @ v
y = y.transpose(1, 2).contiguous().view(B, T, self.num_attn_proj)
return y
class PositionalEncoding(nn.Module):
def __init__(self, model_config: DictConfig,):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=model_config.dropout)
self.num_embed_hidden = model_config.num_embed_hidden
pe = torch.zeros(model_config.tokens_len, self.num_embed_hidden)
position = torch.arange(
0, model_config.tokens_len, dtype=torch.float
).unsqueeze(1)
div_term = torch.exp(
torch.arange(0, self.num_embed_hidden, 2).float()
* (-math.log(10000.0) / self.num_embed_hidden)
)
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0)
self.register_buffer("pe", pe)
def forward(self, x):
x = x + self.pe[: x.size(0), :]
return self.dropout(x)
class RNAFFrwd(
nn.Module
): # params are not shared for context and reply. so need two sets of weights
"""Fully-Connected 3-layer Linear Model"""
def __init__(self, model_config: DictConfig):
"""
:param input_hidden: first-hidden layer input embed-dim
:type input_hidden: int
:param intermediate_hidden: layer-(hidden)-layer middle point weight
:type intermediate_hidden: int
:param dropout_rate: dropout rate, defaults to None
:type dropout_rate: float, optional
"""
# paper specifies,skip connections,layer normalization, and orthogonal initialization
super().__init__()
# 3,679,744 x2 params
self.rna_ffwd_input_dim = (
model_config.num_embed_hidden * model_config.num_attention_heads
)
self.linear_1 = nn.Linear(self.rna_ffwd_input_dim, self.rna_ffwd_input_dim)
self.linear_2 = nn.Linear(self.rna_ffwd_input_dim, self.rna_ffwd_input_dim)
self.norm1 = LayerNorm(self.rna_ffwd_input_dim)
self.norm2 = LayerNorm(self.rna_ffwd_input_dim)
self.final = nn.Linear(self.rna_ffwd_input_dim, model_config.num_embed_hidden)
self.orthogonal_initialization() # torch implementation works perfectly out the box,
def orthogonal_initialization(self):
for l in [
self.linear_1,
self.linear_2,
]:
torch.nn.init.orthogonal_(l.weight)
def forward(self, x: torch.Tensor, attn_msk: torch.Tensor) -> torch.Tensor:
sentence_lengths = attn_msk.sum(1)
# adding square root reduction projection separately as not a shared.
# part of the diagram torch.Size([Batch, scent_len, embedd_dim])
# x has dims B x T x 2*d_emb
norms = 1 / torch.sqrt(sentence_lengths.double()).float() # 64
# TODO: Aggregation is done on all words including the masked ones
x = norms.unsqueeze(1) * torch.sum(x, dim=1) # 64 x1024
x = x + F.gelu(self.linear_1(self.norm1(x)))
x = x + F.gelu(self.linear_2(self.norm2(x)))
return F.normalize(self.final(x), dim=1, p=2) # 64 512
class RNATransformer(nn.Module):
def __init__(self, model_config: DictConfig):
super().__init__()
self.num_embedd_hidden = model_config.num_embed_hidden
self.encoder = nn.Embedding(
model_config.vocab_size, model_config.num_embed_hidden
)
self.model_input = model_config.model_input
if 'baseline' not in self.model_input:
# positional encoder
self.pos_encoder = PositionalEncoding(model_config)
self.transformer_layers = nn.ModuleList(
[
SharedInnerBlock(model_config, int(window/model_config.window))
for window in model_config.relative_attns[
: model_config.num_encoder_layers
]
]
)
self.MHA = MultiheadAttention(model_config)
# self.concatenate = FeedForward2(model_config)
self.rna_ffrwd = RNAFFrwd(model_config)
self.pad_id = 0
def forward(self, x:torch.Tensor) -> torch.Tensor:
if x.is_cuda:
long_tensor = torch.cuda.LongTensor
else:
long_tensor = torch.LongTensor
embedds = self.encoder(x)
if 'baseline' not in self.model_input:
output = self.pos_encoder(embedds)
attention_mask = (x != self.pad_id).int()
for l in self.transformer_layers:
output,attn_scores = l(output, attention_mask)
output = self.MHA(output)
output = self.rna_ffrwd(output, attention_mask)
return output,attn_scores
else:
embedds = torch.flatten(embedds,start_dim=1)
return embedds,None
class GeneEmbeddModel(nn.Module):
def __init__(
self, main_config: DictConfig,
):
super().__init__()
self.train_config = main_config["train_config"]
self.model_config = main_config["model_config"]
self.device = self.train_config.device
self.model_input = self.model_config["model_input"]
self.false_input_perc = self.model_config["false_input_perc"]
#adjust n (used to add rel bias on attn scores)
self.model_config.n = self.model_config.tokens_len*2+1
self.transformer_layers = RNATransformer(self.model_config)
#save tokens_len of sequences to be used to split ids between transformers
self.tokens_len = self.model_config.tokens_len
#reassign tokens_len and vocab_size to init a new transformer
#more clean solution -> RNATransformer and its children should
# have a flag input indicating which transformer
self.model_config.tokens_len = self.model_config.second_input_token_len
self.model_config.n = self.model_config.tokens_len*2+1
self.seq_vocab_size = self.model_config.vocab_size
#this differs between both models not the token_len/ss_token_len
self.model_config.vocab_size = self.model_config.second_input_vocab_size
self.second_input_model = RNATransformer(self.model_config)
#num_transformers refers to using either one model or two in parallel
self.num_transformers = 2
if self.model_input == 'seq':
self.num_transformers = 1
# could be moved to model
self.weight_decay = self.train_config.l2_weight_decay
if 'baseline' in self.model_input:
self.num_transformers = 1
num_nodes = self.model_config.num_embed_hidden*self.tokens_len
self.final_clf_1 = nn.Linear(num_nodes,self.model_config.num_classes)
else:
#setting classification layer
num_nodes = self.num_transformers*self.model_config.num_embed_hidden
if self.num_transformers == 1:
self.final_clf_1 = nn.Linear(num_nodes,self.model_config.num_classes)
else:
self.final_clf_1 = nn.Linear(num_nodes,num_nodes)
self.final_clf_2 = nn.Linear(num_nodes,self.model_config.num_classes)
self.relu = nn.ReLU()
self.BN = nn.BatchNorm1d(num_nodes)
self.dropout = nn.Dropout(0.6)
logger.info("number of parameters: %e", sum(p.numel() for p in self.parameters()))
def distort_input(self,x):
for sample_idx in range(x.shape[0]):
seq_length = x[sample_idx,-1]
num_tokens_flipped = int(self.false_input_perc*seq_length)
max_start_flip_idx = seq_length - num_tokens_flipped
random_feat_idx = random.randint(0,max_start_flip_idx-1)
x[sample_idx,random_feat_idx:random_feat_idx+num_tokens_flipped] = \
torch.tensor(np.random.choice(range(1,self.seq_vocab_size-1),size=num_tokens_flipped,replace=True))
x[sample_idx,random_feat_idx+self.tokens_len:random_feat_idx+self.tokens_len+num_tokens_flipped] = \
torch.tensor(np.random.choice(range(1,self.model_config.second_input_vocab_size-1),size=num_tokens_flipped,replace=True))
return x
def forward(self, x,train=False):
if self.device == 'cuda':
long_tensor = torch.cuda.LongTensor
float_tensor = torch.cuda.FloatTensor
else:
long_tensor = torch.LongTensor
float_tensor = torch.FloatTensor
if train:
if self.false_input_perc > 0:
x = self.distort_input(x)
gene_embedd,attn_scores_first = self.transformer_layers(
x[:, : self.tokens_len].type(long_tensor)
)
attn_scores_second = None
second_input_embedd,attn_scores_second = self.second_input_model(
x[:, self.tokens_len :-1].type(long_tensor)
)
#for tcga: if seq or baseline
if self.num_transformers == 1:
activations = self.final_clf_1(gene_embedd)
else:
out_clf_1 = self.final_clf_1(torch.cat((gene_embedd, second_input_embedd), 1))
out = self.BN(out_clf_1)
out = self.relu(out)
out = self.dropout(out)
activations = self.final_clf_2(out)
#create dummy attn scores for baseline
if 'baseline' in self.model_input:
attn_scores_first = torch.ones((1,2,2),device=x.device)
return [gene_embedd, second_input_embedd, activations,attn_scores_first,attn_scores_second]