import json import logging import os import pickle from pathlib import Path from typing import Any, List import anndata import dill import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np import pandas as pd import yaml from anndata import AnnData from Bio.SeqIO.FastaIO import SimpleFastaParser logger = logging.getLogger(__name__) def create_dirs(paths:List): for path in paths: if not os.path.exists(path): os.mkdir(path) def save(path: Path, data: object, ignore_ext: bool = False) -> Path: """Saves data to this path. Extension and saving function is determined from the type. If the correct extension was already in the path its also ok. At the moment we handle: - pyplot figures -> .pdf - dictionaries -> .yaml - list -> .yaml - numpy -> .npy - pandas dataframes -> .tsv - anndata -> .h5ad - strings -> .txt - _anything else_ -> .p (pickled with `dill`) Parameters ---------- path : Path The full path to save to data: object Data to save ignore_ext : bool Whether to ignore adding the normal expected extension Returns ------- Path The final path to the file """ if not isinstance(path, Path): path = Path(path) # Make sure the folder exists: path.parent.mkdir(parents=True, exist_ok=True) annotation_path = os.path.dirname(os.path.abspath(__file__)) with open(annotation_path+"/tcga_anndata_groupings.yaml", 'r') as stream: tcga_annotations = yaml.safe_load(stream) def make_path(p: Path, ext: str) -> Path: """If the path doesn't end with the given extension add the extension to the path. Parameters ---------- p : Path The path ext : str The expected extension Returns ------- Path The fixed path """ if not ignore_ext and not p.name.endswith(ext): return p.parent.joinpath(f"{p.name}{ext}") return p # PyPlot Figure if isinstance(data, mpl.figure.Figure): path = make_path(path, ".pdf") data.savefig(path) plt.close(data) # Dict ⇒ YAML Files elif isinstance(data, dict): path = make_path(path, ".yaml") with open(path, "w") as fp: yaml.dump(data, fp) # List ⇒ YAML Files elif isinstance(data, list): path = make_path(path, ".yaml") with open(path, "w") as fp: yaml.dump(data, fp) # NumPy Array elif isinstance(data, np.ndarray): path = make_path(path, ".npy") np.save(path, data) # Dataframes ⇒ TSV elif isinstance(data, pd.DataFrame): path = make_path(path, ".tsv") data.to_csv(path, sep="\t") # AnnData elif isinstance(data, anndata.AnnData): path = make_path(path, ".h5ad") for date_col in set(tcga_annotations['anndata']['obs']['datetime_columns']) & set(data.obs.columns): if "datetime" in data.obs[date_col].dtype.name: data.obs[date_col] = data.obs[date_col].dt.strftime("%Y-%m-%d") else: logger.info(f"Column {date_col} in obs should be a date but isnt formatted as one.") data.write(path) # Strings to normal files elif isinstance(data, str): path = make_path(path, ".txt") with open(path, "w") as fp: fp.write(data) # Everything else ⇒ pickle else: path = make_path(path, ".p") dill.dump(data, open(path, "wb")) return path def _resolve_path(path: Path) -> Path: """Given a path, will try to resolve it in multiple ways: 1. Is it a path to a S3 bucket? 2. Is it a global/local file that exists? 3. Is it path that is a prefix to a file that is unique? Parameters ---------- path : Path The path Returns ------- Path The global resolved file. Raises ------ FileNotFoundError If the file doesn't exists or if there are multiple files that match the glob. """ if not path.name.startswith("/"): path = path.expanduser().resolve() # If it exists we'll take it: if path.exists(): return path # But mostly we load files without the extension so we glob for a uniue file: glob_name = path.name if path.name.endswith("*") else path.name + "*" paths = list(path.parent.glob(glob_name)) if len(paths) == 1: return paths[0] # was unique glob raise FileNotFoundError( f"Was trying to resolve path\n\t{path}*\nbut was ambigious because there are no or multiple files that fit the glob." ) def _to_int_string(element: Any) -> str: """Casts a number to a fixed formatted string that's nice categoriazebale. Parameters ---------- element : Any The number, float or int Returns ------- str Either the number formatted as a string or the original input if it didn't work """ try: fl = float(element) return f"{fl:0.0f}" except: return element def cast_anndata(ad: AnnData) -> None: """Fixes the data-type in the `.obs` and `.var` DataFrame columns of an AnnData object. __Works in-place__. Currently does the following: 1.1. Enforces numerical-categorical `.obs` columns 1.2. Makes all other `.obs` columns categoricals 1.3. Makes date-time `.obs` columns, non-categorical pandas `datetime64` 1.4. Enforces real strinng `.obs` columns, to be strings not categoricals 1.5. Enforces some numerical `.obs` columns Configuration for which column belongs in which group is configured in `/transforna/utils/ngs_annotations.yaml` in this repository. Parameters ---------- ad : AnnData The AnnData object """ # 1. Fix obs-annotation dtypes # 1.1. Force numerical looking columns to be actual categorical variables annotation_path = os.path.dirname(os.path.abspath(__file__)) with open(annotation_path+"/tcga_anndata_groupings.yaml", 'r') as stream: tcga_annotations = yaml.safe_load(stream) numerical_categorical_columns: List[str] = set(tcga_annotations['anndata']['obs']['numerical_categorical_columns']) & set( ad.obs.columns ) for column in numerical_categorical_columns: ad.obs[column] = ad.obs[column].apply(_to_int_string).astype("U").astype("category") # 1.2. Forces string and mixed columns to be categoricals ad.strings_to_categoricals() # 1.3. DateTime, parse dates from string datetime_columns: List[str] = set(tcga_annotations['anndata']['obs']['datetime_columns']) & set(ad.obs.columns) for column in datetime_columns: try: ad.obs[column] = pd.to_datetime(ad.obs[column]).astype("datetime64[ns]") except ValueError as e: warning( f"""to_datetime error (parsing "unparseable"):\n {e}\nColumn {column} will be set as string not as datetime.""" ) ad.obs[column] = ad.obs[column].astype("string") # 1.4. Make _real_ string columns to force to be string, reversing step 1.2. # These are columns that contain acutal text, something like an description # or also IDs, which are identical not categories. string_columns: List[str] = set(tcga_annotations['anndata']['obs']['string_columns']) & set(ad.obs.columns) for column in string_columns: ad.obs[column] = ad.obs[column].astype("string") # 1.5. Force numerical columns to be numerical, this is necesary with some # invalid inputs or NaNs numerical_columns: List[str] = set(tcga_annotations['anndata']['obs']['numerical_columns']) & set(ad.obs.columns) for column in numerical_columns: ad.obs[column] = pd.to_numeric(ad.obs[column], errors="coerce") # 2. Fix var-annotation dtypes # 2.1. Enforce boolean columns to be real python bools, normally NaNs become # True here, which we change to False. boolean_columns: List[str] = set(tcga_annotations['anndata']['var']['boolean_columns']) & set(ad.var.columns) for column in boolean_columns: ad.var[column].fillna(False, inplace=True) ad.var[column] = ad.var[column].astype(bool) def load(path: str, ext: str = None, **kwargs): """Loads the given filepath. This will use the extension of the filename to determine what to use for reading (if not overwritten). Most common use-case: At the moment we handle: - pickled objects (.p) - numpy objects (.npy) - dataframes (.csv, .tsv) - json files (.json) - yaml files (.yaml) - anndata files (.h5ad) - excel files (.xlsx) - text (.txt) Parameters ---------- path : str The file-name of the cached file, without extension. (Or path) The file-name can be a glob match e.g. `/data/something/LC__*__21.7.2.*` which matches the everything with anything filling the stars. This only works if there is only one match. So this is shortcut if you do not know the full name but you know there is only one. ext : str, optional The extension to assume, ignoring the actual extension. E.g. loading "tsv" for a "something.csv" file with tab-limits, by default None Returns ------- Whatever is in the saved file. Raises ------ FileNotFoundError If a given path doesn't exist or doesn't give a unqiue file path. NotImplementedError Trying to load a file with an extension we do not have loading code for. """ path = _resolve_path(Path(path)) # If extension is not overwritten take the one from the path_ if ext is None: ext = path.suffix[1:] # Pickle files if ext == "p": return pickle.load(open(path, "rb")) # Numpy Arrays elif ext == "npy": return np.load(path) # TSV ⇒ DataFrame elif ext == "tsv": return pd.read_csv(path, sep="\t", **kwargs) # CSV ⇒ DataFrame elif ext == "csv": return pd.read_csv(path, **kwargs) # JSON ⇒ dict elif ext == "json": return json.load(open(path)) # YAML ⇒ dict elif ext == "yaml": return yaml.load(open(path), Loader=yaml.SafeLoader) # AnnData elif ext == "h5ad": ad = anndata.read_h5ad(path) cast_anndata(ad) return ad # Excel files ⇒ DataFrame elif ext == "xlsx": return pd.read_excel(path, **kwargs) # General text files ⇒ string elif ext == "txt": with open(path, "r") as text_file: return text_file.read() #fasta elif ext == "fa": ## load sequences with open(path) as fasta_file: identifiers = [] seqs = [] for title, sequence in SimpleFastaParser(fasta_file): identifiers.append(title.split(None, 1)[0]) seqs.append(sequence) #convert sequences to dataframe return pd.DataFrame({'Sequences':seqs}) else: raise NotImplementedError