import pandas as pd import torch from PIL import Image from torchvision import transforms # Load the model model = torch.jit.load("SuSy.pt") # Load patch patch = Image.open("midjourney-images-example-patch0.png") # Transform patch to tensor patch = transforms.PILToTensor()(patch).unsqueeze(0) / 255. # Predict patch model.eval() with torch.no_grad(): preds = model(patch) # Print results classes = ['authentic', 'dalle-3-images', 'diffusiondb', 'midjourney-images', 'midjourney_tti', 'realisticSDXL'] result = pd.DataFrame(preds.numpy(), columns=classes) print(result)