ali6parmak commited on
Commit
c1a9148
·
verified ·
1 Parent(s): 79ad13f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +16 -2
README.md CHANGED
@@ -42,14 +42,19 @@ Run the service:
42
 
43
  - With GPU support:
44
  ```
45
- docker run --rm --name pdf-document-layout-analysis --gpus '"device=0"' -p 5060:5060 --entrypoint ./start.sh huridocs/pdf-document-layout-analysis:v0.0.20
46
  ```
47
 
48
  - Without GPU support:
49
  ```
50
- docker run --rm --name pdf-document-layout-analysis -p 5060:5060 --entrypoint ./start.sh huridocs/pdf-document-layout-analysis:v0.0.20
51
  ```
52
 
 
 
 
 
 
53
  Get the segments from a PDF:
54
 
55
  curl -X POST -F 'file=@/PATH/TO/PDF/pdf_name.pdf' localhost:5060
@@ -77,6 +82,12 @@ Start the service:
77
 
78
  make start
79
 
 
 
 
 
 
 
80
  Get the segments from a PDF:
81
 
82
  curl -X POST -F 'file=@/PATH/TO/PDF/pdf_name.pdf' localhost:5060
@@ -110,6 +121,9 @@ Even though the visual model using more resources than the others, generally it'
110
  "sees" the whole page and has an idea about all the context. On the other hand, LightGBM models are performing slightly worse
111
  but they are much faster and more resource-friendly. It will only require your CPU power.
112
 
 
 
 
113
  ## Data
114
 
115
  As we mentioned, we are using the visual model that trained on [DocLayNet](https://github.com/DS4SD/DocLayNet) dataset.
 
42
 
43
  - With GPU support:
44
  ```
45
+ docker run --rm --name pdf-document-layout-analysis --gpus '"device=0"' -p 5060:5060 --entrypoint ./start.sh huridocs/pdf-document-layout-analysis:v0.0.21
46
  ```
47
 
48
  - Without GPU support:
49
  ```
50
+ docker run --rm --name pdf-document-layout-analysis -p 5060:5060 --entrypoint ./start.sh huridocs/pdf-document-layout-analysis:v0.0.21
51
  ```
52
 
53
+ [OPTIONAL] OCR the PDF. Check supported languages (curl localhost:5060/info):
54
+
55
+ curl -X POST -F 'language=en' -F 'file=@/PATH/TO/PDF/pdf_name.pdf' localhost:5060/ocr --output ocr_document.pdf
56
+
57
+
58
  Get the segments from a PDF:
59
 
60
  curl -X POST -F 'file=@/PATH/TO/PDF/pdf_name.pdf' localhost:5060
 
82
 
83
  make start
84
 
85
+
86
+ [OPTIONAL] OCR the PDF. Check supported languages (curl localhost:5060/info):
87
+
88
+ curl -X POST -F 'language=en' -F 'file=@/PATH/TO/PDF/pdf_name.pdf' localhost:5060/ocr --output ocr_document.pdf
89
+
90
+
91
  Get the segments from a PDF:
92
 
93
  curl -X POST -F 'file=@/PATH/TO/PDF/pdf_name.pdf' localhost:5060
 
121
  "sees" the whole page and has an idea about all the context. On the other hand, LightGBM models are performing slightly worse
122
  but they are much faster and more resource-friendly. It will only require your CPU power.
123
 
124
+ The service converts PDFs to text-searchable PDFs using [Tesseract OCR](https://github.com/tesseract-ocr/tesseract) and [ocrmypdf](https://ocrmypdf.readthedocs.io/en/latest/index.html).
125
+
126
+
127
  ## Data
128
 
129
  As we mentioned, we are using the visual model that trained on [DocLayNet](https://github.com/DS4SD/DocLayNet) dataset.