HYM commited on
Commit
b0df7e3
1 Parent(s): 74ff3e9

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +67 -0
README.md ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-sa-4.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - precision
7
+ - recall
8
+ - f1
9
+ - accuracy
10
+ model-index:
11
+ - name: test-finetuned-ner
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # test-finetuned-ner
19
+
20
+ This model is a fine-tuned version of [hfl/chinese-pert-large](https://huggingface.co/hfl/chinese-pert-large) on an unknown dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.1687
23
+ - Precision: 0.7449
24
+ - Recall: 0.7717
25
+ - F1: 0.7581
26
+ - Accuracy: 0.9546
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 2e-05
46
+ - train_batch_size: 3
47
+ - eval_batch_size: 3
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 3
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
56
+ |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
57
+ | 0.1234 | 1.0 | 9387 | 0.1513 | 0.6954 | 0.7365 | 0.7153 | 0.9505 |
58
+ | 0.0841 | 2.0 | 18774 | 0.1462 | 0.7248 | 0.7630 | 0.7434 | 0.9533 |
59
+ | 0.0542 | 3.0 | 28161 | 0.1687 | 0.7449 | 0.7717 | 0.7581 | 0.9546 |
60
+
61
+
62
+ ### Framework versions
63
+
64
+ - Transformers 4.13.0
65
+ - Pytorch 1.8.0+cu111
66
+ - Datasets 2.4.0
67
+ - Tokenizers 0.10.3