Habana
regisss HF staff commited on
Commit
6fda724
1 Parent(s): 68ee4e4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +62 -3
README.md CHANGED
@@ -1,3 +1,62 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ ---
4
+
5
+ [Optimum Habana](https://github.com/huggingface/optimum-habana) is the interface between the Hugging Face Transformers and Diffusers libraries and Habana's Gaudi processor (HPU).
6
+ It provides a set of tools enabling easy and fast model loading, training and inference on single- and multi-HPU settings for different downstream tasks.
7
+ Learn more about how to take advantage of the power of Habana HPUs to train and deploy Transformers and Diffusers models at [hf.co/hardware/habana](https://huggingface.co/hardware/habana).
8
+
9
+ ## Llama model HPU configuration
10
+
11
+ This model only contains the `GaudiConfig` file for running [Falcon models](https://huggingface.co/tiiuae) on Habana's Gaudi processors (HPU).
12
+
13
+ **This model contains no model weights, only a GaudiConfig.**
14
+
15
+ This enables to specify:
16
+ - `use_fused_adam`: whether to use Habana's custom AdamW implementation
17
+ - `use_fused_clip_norm`: whether to use Habana's fused gradient norm clipping operator
18
+ - `use_torch_autocast`: whether to use PyTorch's autocast mixed precision
19
+
20
+ ## Usage
21
+
22
+ The model is instantiated the same way as in the Transformers library.
23
+ The only difference is that there are a few new training arguments specific to HPUs.
24
+
25
+ [Here](https://github.com/huggingface/optimum-habana/blob/main/examples/language-modeling/run_clm.py) is a causal language modeling example script to pre-train/fine-tune a model. You can run it with Falcon with the following command:
26
+ ```bash
27
+ LOWER_LIST=ops_bf16.txt python3 run_lora_clm.py \
28
+ --model_name_or_path tiiuae/falcon-40b \
29
+ --dataset_name timdettmers/openassistant-guanaco \
30
+ --bf16 True \
31
+ --output_dir ./model_lora_falcon \
32
+ --num_train_epochs 3 \
33
+ --per_device_train_batch_size 1 \
34
+ --per_device_eval_batch_size 1 \
35
+ --gradient_accumulation_steps 16 \
36
+ --evaluation_strategy "no" \
37
+ --save_strategy "no" \
38
+ --learning_rate 3e-4 \
39
+ --max_grad_norm 0.3 \
40
+ --warmup_ratio 0.03 \
41
+ --lr_scheduler_type "constant" \
42
+ --logging_steps 1 \
43
+ --do_train \
44
+ --use_habana \
45
+ --use_lazy_mode \
46
+ --pipelining_fwd_bwd \
47
+ --throughput_warmup_steps 3 \
48
+ --lora_rank=64 \
49
+ --lora_alpha=16 \
50
+ --lora_dropout=0.1 \
51
+ --lora_target_modules "query_key_value" "dense" "dense_h_to_4h" "dense_4h_to_h" \
52
+ --dataset_concatenation \
53
+ --max_seq_length 256 \
54
+ --low_cpu_mem_usage True \
55
+ --adam_epsilon 1e-08 \
56
+ --do_eval \
57
+ --validation_split_percentage 5
58
+ ```
59
+
60
+ You will need to install the [PEFT](https://huggingface.co/docs/peft/index) library with `pip install peft` to run the command above.
61
+
62
+ Check the [documentation](https://huggingface.co/docs/optimum/habana/index) out for more advanced usage and examples.