Habana
regisss HF staff commited on
Commit
a6ef228
1 Parent(s): 3b47eae

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +63 -0
README.md CHANGED
@@ -1,3 +1,66 @@
1
  ---
2
  license: apache-2.0
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
  ---
4
+
5
+ [Optimum Habana](https://github.com/huggingface/optimum-habana) is the interface between the Hugging Face Transformers and Diffusers libraries and Habana's Gaudi processor (HPU).
6
+ It provides a set of tools enabling easy and fast model loading, training and inference on single- and multi-HPU settings for different downstream tasks.
7
+ Learn more about how to take advantage of the power of Habana HPUs to train and deploy Transformers and Diffusers models at [hf.co/hardware/habana](https://huggingface.co/hardware/habana).
8
+
9
+ ## Whisper model HPU configuration
10
+
11
+ This model only contains the `GaudiConfig` file for running the [Whisper](https://huggingface.co/openai/whisper-small) model on Habana's Gaudi processors (HPU).
12
+
13
+ **This model contains no model weights, only a GaudiConfig.**
14
+
15
+ This enables to specify:
16
+ - `use_fused_adam`: whether to use Habana's custom AdamW implementation
17
+ - `use_fused_clip_norm`: whether to use Habana's fused gradient norm clipping operator
18
+ - `use_torch_autocast`: whether to use Torch Autocast for managing mixed precision
19
+
20
+ ## Usage
21
+
22
+ The model is instantiated the same way as in the Transformers library.
23
+ The only difference is that there are a few new training arguments specific to HPUs.\
24
+ It is strongly recommended to train this model doing bf16 mixed-precision training for optimal performance and accuracy.
25
+
26
+ [Here](https://github.com/huggingface/optimum-habana/blob/main/examples/speech-recognition/run_speech_recognition_seq2seq.py) is a sequence-to-sequence speech recognition example script to fine-tune a model. You can run it with Whisper with the following command:
27
+ ```bash
28
+ python run_speech_recognition_seq2seq.py \
29
+ --model_name_or_path="openai/whisper-small" \
30
+ --dataset_name="mozilla-foundation/common_voice_11_0" \
31
+ --dataset_config_name="hi" \
32
+ --language="hindi" \
33
+ --train_split_name="train+validation" \
34
+ --eval_split_name="test" \
35
+ --gaudi_config_name="Habana/whisper" \
36
+ --max_steps="5000" \
37
+ --output_dir="/tmp/whisper-small-hi" \
38
+ --per_device_train_batch_size="48" \
39
+ --per_device_eval_batch_size="2" \
40
+ --logging_steps="25" \
41
+ --learning_rate="1e-5" \
42
+ --warmup_steps="500" \
43
+ --evaluation_strategy="steps" \
44
+ --eval_steps="1000" \
45
+ --save_strategy="steps" \
46
+ --save_steps="1000" \
47
+ --generation_max_length="225" \
48
+ --preprocessing_num_workers="1" \
49
+ --length_column_name="input_length" \
50
+ --max_duration_in_seconds="30" \
51
+ --text_column_name="sentence" \
52
+ --freeze_feature_encoder="False" \
53
+ --group_by_length \
54
+ --bf16 \
55
+ --overwrite_output_dir \
56
+ --do_train \
57
+ --do_eval \
58
+ --predict_with_generate \
59
+ --use_habana \
60
+ --use_hpu_graphs_for_inference \
61
+ --label_features_max_length 128 \
62
+ --dataloader_num_workers 8 \
63
+ --throughput_warmup_steps 3
64
+ ```
65
+
66
+ Check the [documentation](https://huggingface.co/docs/optimum/habana/index) out for more advanced usage and examples.