{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fa0654b9080>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684048418958208685, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": null, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWV9QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHHjUIomXw+MAWyUS8yMAXSUR0CoVoRxT850dX2UKGgGR0Byu2mR/3FlaAdLwmgIR0CoVsF+/gzhdX2UKGgGR0BiAhA4XGfgaAdN6ANoCEdAqFbMDZDiO3V9lChoBkdAZO+2mYSg5GgHTegDaAhHQKhW9OXVsk91fZQoaAZHQHFsBcRlHz9oB0vmaAhHQKhX/ktmL+B1fZQoaAZHQHJm4e9zwMJoB00IAWgIR0CoWBVSGahIdX2UKGgGR0BxEGKziS7oaAdL+2gIR0CoWDr5ylvZdX2UKGgGR0BhI89Oh0yQaAdN6ANoCEdAqFi8kSmIkHV9lChoBkdAbcYdjG1hLGgHTW0BaAhHQKhY8T0xubZ1fZQoaAZHQG9LrksBhhJoB0u8aAhHQKhY8MCtA9p1fZQoaAZHQHLSY5ksjFBoB0vmaAhHQKhZAAFPi1l1fZQoaAZHQHIL5mI0qH5oB0vpaAhHQKhZQVO9FnZ1fZQoaAZHQHGkpOBUaQ5oB0u7aAhHQKhZ9bAUL2J1fZQoaAZHQHDR14X40uVoB0uxaAhHQKhZ/BVuJk51fZQoaAZHQHNhdtZV4otoB0vuaAhHQKhahmrbQC11fZQoaAZHQHJAYXTEzftoB0vbaAhHQKhajzT4L1F1fZQoaAZHQHIU7j5sTFloB0vsaAhHQKhanK8tf5V1fZQoaAZHQGaf5c1O0sxoB009AmgIR0CoWqqXWvr4dX2UKGgGR0Bkg0IqslsxaAdN6ANoCEdAqFqrFVDKHXV9lChoBkdAcMyBkqc3EWgHTSkBaAhHQKhbfEtuk1x1fZQoaAZHQHOQFuNxVABoB0vqaAhHQKhb5xFRYRx1fZQoaAZHQHD4jF6zE75oB0vPaAhHQKhcEF7D2rZ1fZQoaAZHQHFmtjwx33ZoB0vuaAhHQKhcFK9PDYR1fZQoaAZHQG51K6OHWSVoB0vUaAhHQKhcZB+nZTR1fZQoaAZHQHJQLv9cbBJoB0vOaAhHQKhcjHLidat1fZQoaAZHQG86mp2ll9VoB0vzaAhHQKhczvwVj7R1fZQoaAZHQHAzA7DEWIpoB0vTaAhHQKhdVrCWNWF1fZQoaAZHQHHzZtrKvFFoB0vAaAhHQKhdjk8Rtgt1fZQoaAZHQHC0CPhhpg1oB0vgaAhHQKhdjaq0dBB1fZQoaAZHQHKJj0QK8cxoB0vHaAhHQKhdvMFlkH51fZQoaAZHQHAlthZyMk1oB0vWaAhHQKheGXMQmNR1fZQoaAZHQHChW9xp+MJoB0vnaAhHQKheZLnLaEl1fZQoaAZHQG/d+7lJYkpoB0vUaAhHQKhfGTYdyT91fZQoaAZHQHLwNwm3OOdoB0u3aAhHQKhfPyQPqcF1fZQoaAZHQHLFRlDneSBoB00jAWgIR0CoX3G3WnTBdX2UKGgGR0BxtkLsrupkaAdLz2gIR0CoX36nrIHUdX2UKGgGR0By02Zv1lGxaAdLxGgIR0CoX4Dwx33YdX2UKGgGR0BwPyBshxHYaAdL1GgIR0CoYFI4VARkdX2UKGgGR0BzBYUahpQDaAdLyWgIR0CoYGM/6frbdX2UKGgGR0BwcNrP+n63aAdL5mgIR0CoYGta6jFidX2UKGgGR0Bux0mMOwxGaAdLvGgIR0CoYLIeHSF5dX2UKGgGR0BxD48DB/I9aAdLzGgIR0CoYS08/2TQdX2UKGgGR0BmHxFspG4JaAdN8AFoCEdAqGFIfW+XaHV9lChoBkdAaskR02cawWgHS9hoCEdAqGFlWCEpRXV9lChoBkdAc2HLH+6y0WgHS+loCEdAqGHgdKdxyXV9lChoBkdAbjEPGQ0XQGgHS9doCEdAqGHz9sJpnHV9lChoBkdAcOpvxpcopmgHS8BoCEdAqGKoAOrhi3V9lChoBkdAcJzVbzK9wmgHS+doCEdAqGKsE5hjOXV9lChoBkdAbiyH/Lkjo2gHS8RoCEdAqGMr2Bas63V9lChoBkdAcTIt5le4TmgHS9poCEdAqGOWFQEZBXV9lChoBkdAQm5QN0/4ZmgHS6BoCEdAqGPtN1yNoHV9lChoBkdAcKPZ9NN8E2gHS9hoCEdAqGTLFjurqHV9lChoBkdAccYHUMG5c2gHS+BoCEdAqGTc+LWI43V9lChoBkdAcxhb4Ju2qmgHS9RoCEdAqGYljd56dHV9lChoBkdAb9pT3IuGsWgHS8ZoCEdAqGaPRiPQwHV9lChoBkdAcXm336AOKGgHS+loCEdAqGaPhIe5nXV9lChoBkdAcdLZOBUaQ2gHS8xoCEdAqGelNL127nV9lChoBkdAbN4QkHD77GgHS9doCEdAqGf/JtBOYnV9lChoBkfAStNqzqrzXmgHTZIBaAhHQKhoDN+so2J1fZQoaAZHQHABqgM+eOJoB0vIaAhHQKhpNFx4ptt1fZQoaAZHQHGkFSn+AEtoB0vuaAhHQKhpUqABkqd1fZQoaAZHQHCA5lOGj9JoB0vUaAhHQKhqro2XLNh1fZQoaAZHQG8F87yQPqdoB0vXaAhHQKhq4Bun/DN1fZQoaAZHQHFOZhz/6wdoB00TAWgIR0Coav9YW+GodX2UKGgGR8BTFX1SOzY3aAdN/AFoCEdAqGt/C/GlynV9lChoBkdAafX7j1f3OGgHTZUBaAhHQKhsXMRpUPx1fZQoaAZHQHIpR7VrhzhoB0vZaAhHQKhsuMb3oLZ1fZQoaAZHQGDKQXQ+lj5oB03oA2gIR0CobLoHcDbKdX2UKGgGR0BxoXggow23aAdL3GgIR0CobMvUSZjQdX2UKGgGR0BydxGDtgKGaAdL+WgIR0CobSaH0se5dX2UKGgGR0ByyLkU9IPLaAdLyWgIR0CobT1W8yvcdX2UKGgGR0BqRBNfw7T2aAdN7AFoCEdAqG1yIFeOXHV9lChoBkdAcnzwSamXPmgHS+VoCEdAqG6wLE1l5HV9lChoBkdAb5FNXYDkl2gHTR8BaAhHQKhu5SLqD9R1fZQoaAZHQHNimG/N7jVoB0vQaAhHQKhvG+GoJiR1fZQoaAZHQG26LxI8QqZoB0vVaAhHQKhvY48U21l1fZQoaAZHQHEmAwTM7ltoB0vyaAhHQKhv4sOG0u11fZQoaAZHQHAEgIldC3RoB0vnaAhHQKhwFtXxOL11fZQoaAZHQG9HNy5qdpZoB0u9aAhHQKhwlH5Jsft1fZQoaAZHQHC9SQ1aW5ZoB0vhaAhHQKhwmhQFcIJ1fZQoaAZHQHI95tWMju9oB0vWaAhHQKhwoTsY2sJ1fZQoaAZHQHCft2HLzPNoB0vpaAhHQKhw8SrYGt91fZQoaAZHQHCT2PPszEdoB0vcaAhHQKhxCMvRJEp1fZQoaAZHQHDAwoPTXrdoB00aAWgIR0CoceuRDCxedX2UKGgGR0BwkdIOH310aAdL3WgIR0CocseGXXyzdX2UKGgGR0BvpRx3mmtRaAdLuGgIR0CoctSH2ys0dX2UKGgGR0BwA/EwWWQfaAdL02gIR0CoctKMFUyYdX2UKGgGR0Bxc8YUFjd6aAdL4GgIR0Coc0gv+OwQdX2UKGgGR0BxSNJ4B3iaaAdL22gIR0Coc/UZNwirdX2UKGgGR0BzwpYkmhM8aAdLzmgIR0CodHB8x9G7dX2UKGgGR0Bw9V9ORDCxaAdLz2gIR0CodIFOO802dX2UKGgGR0BxRlWsA/9paAdL4WgIR0CodM9BKL88dX2UKGgGR0BxnAogFHJ+aAdL22gIR0CodRtwR5C4dX2UKGgGR0BpbrgCOmzjaAdNiwJoCEdAqHXEdeY2KnV9lChoBkdAchV3m3fAK2gHTQABaAhHQKh19Oxjawl1fZQoaAZHQGFwKmsNlRRoB03oA2gIR0CodhSQ5myxdX2UKGgGR0BwJZwDNhVmaAdL52gIR0CodmZgogFHdX2UKGgGR0BxzqYiPhhqaAdLvmgIR0CodnmV7hNudX2UKGgGR0BzqQcMmWt2aAdLyGgIR0Codq7Gm1pkdX2UKGgGR0BwYFUKiO/+aAdL3WgIR0CodxH6/IsAdWUu"}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}