mteb results
Browse files
README.md
CHANGED
@@ -1,3 +1,1731 @@
|
|
1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
license: mit
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
tags:
|
3 |
+
- mteb
|
4 |
+
- transformers
|
5 |
+
model-index:
|
6 |
+
- name: speed-embedding-7b-instruct
|
7 |
+
results:
|
8 |
+
- task:
|
9 |
+
type: Classification
|
10 |
+
dataset:
|
11 |
+
type: mteb/amazon_counterfactual
|
12 |
+
name: MTEB AmazonCounterfactualClassification (en)
|
13 |
+
config: en
|
14 |
+
split: test
|
15 |
+
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
|
16 |
+
metrics:
|
17 |
+
- type: accuracy
|
18 |
+
value: 76.67164179104478
|
19 |
+
- type: ap
|
20 |
+
value: 39.07181577576136
|
21 |
+
- type: f1
|
22 |
+
value: 70.25085237742982
|
23 |
+
- task:
|
24 |
+
type: Classification
|
25 |
+
dataset:
|
26 |
+
type: mteb/amazon_polarity
|
27 |
+
name: MTEB AmazonPolarityClassification
|
28 |
+
config: default
|
29 |
+
split: test
|
30 |
+
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
|
31 |
+
metrics:
|
32 |
+
- type: accuracy
|
33 |
+
value: 96.1775
|
34 |
+
- type: ap
|
35 |
+
value: 94.84308844303422
|
36 |
+
- type: f1
|
37 |
+
value: 96.17546959843244
|
38 |
+
- task:
|
39 |
+
type: Classification
|
40 |
+
dataset:
|
41 |
+
type: mteb/amazon_reviews_multi
|
42 |
+
name: MTEB AmazonReviewsClassification (en)
|
43 |
+
config: en
|
44 |
+
split: test
|
45 |
+
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
46 |
+
metrics:
|
47 |
+
- type: accuracy
|
48 |
+
value: 56.278000000000006
|
49 |
+
- type: f1
|
50 |
+
value: 55.45101875980304
|
51 |
+
- task:
|
52 |
+
type: Retrieval
|
53 |
+
dataset:
|
54 |
+
type: arguana
|
55 |
+
name: MTEB ArguAna
|
56 |
+
config: default
|
57 |
+
split: test
|
58 |
+
revision: None
|
59 |
+
metrics:
|
60 |
+
- type: ndcg_at_1
|
61 |
+
value: 33.642
|
62 |
+
- type: ndcg_at_3
|
63 |
+
value: 49.399
|
64 |
+
- type: ndcg_at_5
|
65 |
+
value: 54.108999999999995
|
66 |
+
- type: ndcg_at_10
|
67 |
+
value: 59.294999999999995
|
68 |
+
- type: ndcg_at_100
|
69 |
+
value: 62.015
|
70 |
+
- type: map_at_1
|
71 |
+
value: 33.642
|
72 |
+
- type: map_at_3
|
73 |
+
value: 45.507
|
74 |
+
- type: map_at_5
|
75 |
+
value: 48.1
|
76 |
+
- type: map_at_10
|
77 |
+
value: 50.248000000000005
|
78 |
+
- type: map_at_100
|
79 |
+
value: 50.954
|
80 |
+
- type: recall_at_1
|
81 |
+
value: 33.642
|
82 |
+
- type: recall_at_3
|
83 |
+
value: 60.669
|
84 |
+
- type: recall_at_5
|
85 |
+
value: 72.191
|
86 |
+
- type: recall_at_10
|
87 |
+
value: 88.193
|
88 |
+
- type: recall_at_100
|
89 |
+
value: 99.431
|
90 |
+
- type: precision_at_1
|
91 |
+
value: 33.642
|
92 |
+
- type: precision_at_3
|
93 |
+
value: 20.223
|
94 |
+
- type: precision_at_5
|
95 |
+
value: 14.438
|
96 |
+
- type: precision_at_10
|
97 |
+
value: 8.819
|
98 |
+
- type: precision_at_100
|
99 |
+
value: 0.9939999999999999
|
100 |
+
- type: mrr_at_1
|
101 |
+
value: 33.997
|
102 |
+
- type: mrr_at_3
|
103 |
+
value: 45.614
|
104 |
+
- type: mrr_at_5
|
105 |
+
value: 48.263
|
106 |
+
- type: mrr_at_10
|
107 |
+
value: 50.388999999999996
|
108 |
+
- type: mrr_at_100
|
109 |
+
value: 51.102000000000004
|
110 |
+
- task:
|
111 |
+
type: Clustering
|
112 |
+
dataset:
|
113 |
+
type: mteb/arxiv-clustering-p2p
|
114 |
+
name: MTEB ArxivClusteringP2P
|
115 |
+
config: default
|
116 |
+
split: test
|
117 |
+
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
|
118 |
+
metrics:
|
119 |
+
- type: v_measure
|
120 |
+
value: 51.1249344529392
|
121 |
+
- task:
|
122 |
+
type: Clustering
|
123 |
+
dataset:
|
124 |
+
type: mteb/arxiv-clustering-s2s
|
125 |
+
name: MTEB ArxivClusteringS2S
|
126 |
+
config: default
|
127 |
+
split: test
|
128 |
+
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
|
129 |
+
metrics:
|
130 |
+
- type: v_measure
|
131 |
+
value: 47.01575217563573
|
132 |
+
- task:
|
133 |
+
type: Reranking
|
134 |
+
dataset:
|
135 |
+
type: mteb/askubuntudupquestions-reranking
|
136 |
+
name: MTEB AskUbuntuDupQuestions
|
137 |
+
config: default
|
138 |
+
split: test
|
139 |
+
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
|
140 |
+
metrics:
|
141 |
+
- type: map
|
142 |
+
value: 67.2259454062751
|
143 |
+
- type: mrr
|
144 |
+
value: 79.37508244294948
|
145 |
+
- task:
|
146 |
+
type: STS
|
147 |
+
dataset:
|
148 |
+
type: mteb/biosses-sts
|
149 |
+
name: MTEB BIOSSES
|
150 |
+
config: default
|
151 |
+
split: test
|
152 |
+
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
|
153 |
+
metrics:
|
154 |
+
- type: cos_sim_pearson
|
155 |
+
value: 89.5312396547344
|
156 |
+
- type: cos_sim_spearman
|
157 |
+
value: 87.1447567367366
|
158 |
+
- type: euclidean_pearson
|
159 |
+
value: 88.67110804544821
|
160 |
+
- type: euclidean_spearman
|
161 |
+
value: 87.1447567367366
|
162 |
+
- type: manhattan_pearson
|
163 |
+
value: 89.06983994154335
|
164 |
+
- type: manhattan_spearman
|
165 |
+
value: 87.59115245033443
|
166 |
+
- task:
|
167 |
+
type: Classification
|
168 |
+
dataset:
|
169 |
+
type: mteb/banking77
|
170 |
+
name: MTEB Banking77Classification
|
171 |
+
config: default
|
172 |
+
split: test
|
173 |
+
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
|
174 |
+
metrics:
|
175 |
+
- type: accuracy
|
176 |
+
value: 88.63636363636364
|
177 |
+
- type: f1
|
178 |
+
value: 88.58740097633193
|
179 |
+
- task:
|
180 |
+
type: Clustering
|
181 |
+
dataset:
|
182 |
+
type: mteb/biorxiv-clustering-p2p
|
183 |
+
name: MTEB BiorxivClusteringP2P
|
184 |
+
config: default
|
185 |
+
split: test
|
186 |
+
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
|
187 |
+
metrics:
|
188 |
+
- type: v_measure
|
189 |
+
value: 41.99753263006505
|
190 |
+
- task:
|
191 |
+
type: Clustering
|
192 |
+
dataset:
|
193 |
+
type: mteb/biorxiv-clustering-s2s
|
194 |
+
name: MTEB BiorxivClusteringS2S
|
195 |
+
config: default
|
196 |
+
split: test
|
197 |
+
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
|
198 |
+
metrics:
|
199 |
+
- type: v_measure
|
200 |
+
value: 39.623067884052666
|
201 |
+
- task:
|
202 |
+
type: Retrieval
|
203 |
+
dataset:
|
204 |
+
type: BeIR/cqadupstack
|
205 |
+
name: MTEB CQADupstackRetrieval
|
206 |
+
config: default
|
207 |
+
split: test
|
208 |
+
revision: None
|
209 |
+
metrics:
|
210 |
+
- type: ndcg_at_1
|
211 |
+
value: 30.904666666666664
|
212 |
+
- type: ndcg_at_3
|
213 |
+
value: 36.32808333333333
|
214 |
+
- type: ndcg_at_5
|
215 |
+
value: 38.767250000000004
|
216 |
+
- type: ndcg_at_10
|
217 |
+
value: 41.62008333333333
|
218 |
+
- type: ndcg_at_100
|
219 |
+
value: 47.118083333333324
|
220 |
+
- type: map_at_1
|
221 |
+
value: 25.7645
|
222 |
+
- type: map_at_3
|
223 |
+
value: 32.6235
|
224 |
+
- type: map_at_5
|
225 |
+
value: 34.347
|
226 |
+
- type: map_at_10
|
227 |
+
value: 35.79658333333333
|
228 |
+
- type: map_at_100
|
229 |
+
value: 37.10391666666666
|
230 |
+
- type: recall_at_1
|
231 |
+
value: 25.7645
|
232 |
+
- type: recall_at_3
|
233 |
+
value: 39.622666666666674
|
234 |
+
- type: recall_at_5
|
235 |
+
value: 45.938750000000006
|
236 |
+
- type: recall_at_10
|
237 |
+
value: 54.43816666666667
|
238 |
+
- type: recall_at_100
|
239 |
+
value: 78.66183333333333
|
240 |
+
- type: precision_at_1
|
241 |
+
value: 30.904666666666664
|
242 |
+
- type: precision_at_3
|
243 |
+
value: 17.099083333333333
|
244 |
+
- type: precision_at_5
|
245 |
+
value: 12.278416666666669
|
246 |
+
- type: precision_at_10
|
247 |
+
value: 7.573083333333335
|
248 |
+
- type: precision_at_100
|
249 |
+
value: 1.22275
|
250 |
+
- type: mrr_at_1
|
251 |
+
value: 30.904666666666664
|
252 |
+
- type: mrr_at_3
|
253 |
+
value: 37.458333333333336
|
254 |
+
- type: mrr_at_5
|
255 |
+
value: 38.97333333333333
|
256 |
+
- type: mrr_at_10
|
257 |
+
value: 40.10316666666666
|
258 |
+
- type: mrr_at_100
|
259 |
+
value: 41.004250000000006
|
260 |
+
- task:
|
261 |
+
type: Retrieval
|
262 |
+
dataset:
|
263 |
+
type: climate-fever
|
264 |
+
name: MTEB ClimateFEVER
|
265 |
+
config: default
|
266 |
+
split: test
|
267 |
+
revision: None
|
268 |
+
metrics:
|
269 |
+
- type: ndcg_at_1
|
270 |
+
value: 38.046
|
271 |
+
- type: ndcg_at_3
|
272 |
+
value: 31.842
|
273 |
+
- type: ndcg_at_5
|
274 |
+
value: 33.698
|
275 |
+
- type: ndcg_at_10
|
276 |
+
value: 37.765
|
277 |
+
- type: ndcg_at_100
|
278 |
+
value: 44.998
|
279 |
+
- type: map_at_1
|
280 |
+
value: 16.682
|
281 |
+
- type: map_at_3
|
282 |
+
value: 23.624000000000002
|
283 |
+
- type: map_at_5
|
284 |
+
value: 25.812
|
285 |
+
- type: map_at_10
|
286 |
+
value: 28.017999999999997
|
287 |
+
- type: map_at_100
|
288 |
+
value: 30.064999999999998
|
289 |
+
- type: recall_at_1
|
290 |
+
value: 16.682
|
291 |
+
- type: recall_at_3
|
292 |
+
value: 28.338
|
293 |
+
- type: recall_at_5
|
294 |
+
value: 34.486
|
295 |
+
- type: recall_at_10
|
296 |
+
value: 43.474000000000004
|
297 |
+
- type: recall_at_100
|
298 |
+
value: 67.984
|
299 |
+
- type: precision_at_1
|
300 |
+
value: 38.046
|
301 |
+
- type: precision_at_3
|
302 |
+
value: 23.779
|
303 |
+
- type: precision_at_5
|
304 |
+
value: 17.849999999999998
|
305 |
+
- type: precision_at_10
|
306 |
+
value: 11.642
|
307 |
+
- type: precision_at_100
|
308 |
+
value: 1.9429999999999998
|
309 |
+
- type: mrr_at_1
|
310 |
+
value: 38.046
|
311 |
+
- type: mrr_at_3
|
312 |
+
value: 46.764
|
313 |
+
- type: mrr_at_5
|
314 |
+
value: 48.722
|
315 |
+
- type: mrr_at_10
|
316 |
+
value: 49.976
|
317 |
+
- type: mrr_at_100
|
318 |
+
value: 50.693999999999996
|
319 |
+
- task:
|
320 |
+
type: Retrieval
|
321 |
+
dataset:
|
322 |
+
type: dbpedia-entity
|
323 |
+
name: MTEB DBPedia
|
324 |
+
config: default
|
325 |
+
split: test
|
326 |
+
revision: None
|
327 |
+
metrics:
|
328 |
+
- type: ndcg_at_1
|
329 |
+
value: 63.24999999999999
|
330 |
+
- type: ndcg_at_3
|
331 |
+
value: 54.005
|
332 |
+
- type: ndcg_at_5
|
333 |
+
value: 51.504000000000005
|
334 |
+
- type: ndcg_at_10
|
335 |
+
value: 49.738
|
336 |
+
- type: ndcg_at_100
|
337 |
+
value: 54.754000000000005
|
338 |
+
- type: map_at_1
|
339 |
+
value: 10.639
|
340 |
+
- type: map_at_3
|
341 |
+
value: 16.726
|
342 |
+
- type: map_at_5
|
343 |
+
value: 20.101
|
344 |
+
- type: map_at_10
|
345 |
+
value: 24.569
|
346 |
+
- type: map_at_100
|
347 |
+
value: 35.221999999999994
|
348 |
+
- type: recall_at_1
|
349 |
+
value: 10.639
|
350 |
+
- type: recall_at_3
|
351 |
+
value: 17.861
|
352 |
+
- type: recall_at_5
|
353 |
+
value: 22.642
|
354 |
+
- type: recall_at_10
|
355 |
+
value: 30.105999999999998
|
356 |
+
- type: recall_at_100
|
357 |
+
value: 60.92999999999999
|
358 |
+
- type: precision_at_1
|
359 |
+
value: 75.0
|
360 |
+
- type: precision_at_3
|
361 |
+
value: 58.083
|
362 |
+
- type: precision_at_5
|
363 |
+
value: 50.0
|
364 |
+
- type: precision_at_10
|
365 |
+
value: 40.35
|
366 |
+
- type: precision_at_100
|
367 |
+
value: 12.659999999999998
|
368 |
+
- type: mrr_at_1
|
369 |
+
value: 75.0
|
370 |
+
- type: mrr_at_3
|
371 |
+
value: 80.042
|
372 |
+
- type: mrr_at_5
|
373 |
+
value: 80.779
|
374 |
+
- type: mrr_at_10
|
375 |
+
value: 81.355
|
376 |
+
- type: mrr_at_100
|
377 |
+
value: 81.58
|
378 |
+
- task:
|
379 |
+
type: Classification
|
380 |
+
dataset:
|
381 |
+
type: mteb/emotion
|
382 |
+
name: MTEB EmotionClassification
|
383 |
+
config: default
|
384 |
+
split: test
|
385 |
+
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
|
386 |
+
metrics:
|
387 |
+
- type: accuracy
|
388 |
+
value: 51.025
|
389 |
+
- type: f1
|
390 |
+
value: 47.08253474922065
|
391 |
+
- task:
|
392 |
+
type: Retrieval
|
393 |
+
dataset:
|
394 |
+
type: fever
|
395 |
+
name: MTEB FEVER
|
396 |
+
config: default
|
397 |
+
split: test
|
398 |
+
revision: None
|
399 |
+
metrics:
|
400 |
+
- type: ndcg_at_1
|
401 |
+
value: 82.163
|
402 |
+
- type: ndcg_at_3
|
403 |
+
value: 86.835
|
404 |
+
- type: ndcg_at_5
|
405 |
+
value: 87.802
|
406 |
+
- type: ndcg_at_10
|
407 |
+
value: 88.529
|
408 |
+
- type: ndcg_at_100
|
409 |
+
value: 89.17
|
410 |
+
- type: map_at_1
|
411 |
+
value: 76.335
|
412 |
+
- type: map_at_3
|
413 |
+
value: 83.91499999999999
|
414 |
+
- type: map_at_5
|
415 |
+
value: 84.64500000000001
|
416 |
+
- type: map_at_10
|
417 |
+
value: 85.058
|
418 |
+
- type: map_at_100
|
419 |
+
value: 85.257
|
420 |
+
- type: recall_at_1
|
421 |
+
value: 76.335
|
422 |
+
- type: recall_at_3
|
423 |
+
value: 90.608
|
424 |
+
- type: recall_at_5
|
425 |
+
value: 93.098
|
426 |
+
- type: recall_at_10
|
427 |
+
value: 95.173
|
428 |
+
- type: recall_at_100
|
429 |
+
value: 97.59299999999999
|
430 |
+
- type: precision_at_1
|
431 |
+
value: 82.163
|
432 |
+
- type: precision_at_3
|
433 |
+
value: 33.257999999999996
|
434 |
+
- type: precision_at_5
|
435 |
+
value: 20.654
|
436 |
+
- type: precision_at_10
|
437 |
+
value: 10.674999999999999
|
438 |
+
- type: precision_at_100
|
439 |
+
value: 1.122
|
440 |
+
- type: mrr_at_1
|
441 |
+
value: 82.163
|
442 |
+
- type: mrr_at_3
|
443 |
+
value: 88.346
|
444 |
+
- type: mrr_at_5
|
445 |
+
value: 88.791
|
446 |
+
- type: mrr_at_10
|
447 |
+
value: 88.97699999999999
|
448 |
+
- type: mrr_at_100
|
449 |
+
value: 89.031
|
450 |
+
- task:
|
451 |
+
type: Retrieval
|
452 |
+
dataset:
|
453 |
+
type: fiqa
|
454 |
+
name: MTEB FiQA2018
|
455 |
+
config: default
|
456 |
+
split: test
|
457 |
+
revision: None
|
458 |
+
metrics:
|
459 |
+
- type: ndcg_at_1
|
460 |
+
value: 55.093
|
461 |
+
- type: ndcg_at_3
|
462 |
+
value: 52.481
|
463 |
+
- type: ndcg_at_5
|
464 |
+
value: 53.545
|
465 |
+
- type: ndcg_at_10
|
466 |
+
value: 56.053
|
467 |
+
- type: ndcg_at_100
|
468 |
+
value: 62.53999999999999
|
469 |
+
- type: map_at_1
|
470 |
+
value: 29.189999999999998
|
471 |
+
- type: map_at_3
|
472 |
+
value: 42.603
|
473 |
+
- type: map_at_5
|
474 |
+
value: 45.855000000000004
|
475 |
+
- type: map_at_10
|
476 |
+
value: 48.241
|
477 |
+
- type: map_at_100
|
478 |
+
value: 50.300999999999995
|
479 |
+
- type: recall_at_1
|
480 |
+
value: 29.189999999999998
|
481 |
+
- type: recall_at_3
|
482 |
+
value: 47.471999999999994
|
483 |
+
- type: recall_at_5
|
484 |
+
value: 54.384
|
485 |
+
- type: recall_at_10
|
486 |
+
value: 62.731
|
487 |
+
- type: recall_at_100
|
488 |
+
value: 86.02300000000001
|
489 |
+
- type: precision_at_1
|
490 |
+
value: 55.093
|
491 |
+
- type: precision_at_3
|
492 |
+
value: 34.979
|
493 |
+
- type: precision_at_5
|
494 |
+
value: 25.278
|
495 |
+
- type: precision_at_10
|
496 |
+
value: 15.231
|
497 |
+
- type: precision_at_100
|
498 |
+
value: 2.2190000000000003
|
499 |
+
- type: mrr_at_1
|
500 |
+
value: 55.093
|
501 |
+
- type: mrr_at_3
|
502 |
+
value: 61.317
|
503 |
+
- type: mrr_at_5
|
504 |
+
value: 62.358999999999995
|
505 |
+
- type: mrr_at_10
|
506 |
+
value: 63.165000000000006
|
507 |
+
- type: mrr_at_100
|
508 |
+
value: 63.81
|
509 |
+
- task:
|
510 |
+
type: Retrieval
|
511 |
+
dataset:
|
512 |
+
type: hotpotqa
|
513 |
+
name: MTEB HotpotQA
|
514 |
+
config: default
|
515 |
+
split: test
|
516 |
+
revision: None
|
517 |
+
metrics:
|
518 |
+
- type: ndcg_at_1
|
519 |
+
value: 78.866
|
520 |
+
- type: ndcg_at_3
|
521 |
+
value: 70.128
|
522 |
+
- type: ndcg_at_5
|
523 |
+
value: 73.017
|
524 |
+
- type: ndcg_at_10
|
525 |
+
value: 75.166
|
526 |
+
- type: ndcg_at_100
|
527 |
+
value: 77.97500000000001
|
528 |
+
- type: map_at_1
|
529 |
+
value: 39.433
|
530 |
+
- type: map_at_3
|
531 |
+
value: 64.165
|
532 |
+
- type: map_at_5
|
533 |
+
value: 66.503
|
534 |
+
- type: map_at_10
|
535 |
+
value: 67.822
|
536 |
+
- type: map_at_100
|
537 |
+
value: 68.675
|
538 |
+
- type: recall_at_1
|
539 |
+
value: 39.433
|
540 |
+
- type: recall_at_3
|
541 |
+
value: 69.03399999999999
|
542 |
+
- type: recall_at_5
|
543 |
+
value: 74.74
|
544 |
+
- type: recall_at_10
|
545 |
+
value: 80.108
|
546 |
+
- type: recall_at_100
|
547 |
+
value: 90.81700000000001
|
548 |
+
- type: precision_at_1
|
549 |
+
value: 78.866
|
550 |
+
- type: precision_at_3
|
551 |
+
value: 46.022999999999996
|
552 |
+
- type: precision_at_5
|
553 |
+
value: 29.896
|
554 |
+
- type: precision_at_10
|
555 |
+
value: 16.022
|
556 |
+
- type: precision_at_100
|
557 |
+
value: 1.8159999999999998
|
558 |
+
- type: mrr_at_1
|
559 |
+
value: 78.866
|
560 |
+
- type: mrr_at_3
|
561 |
+
value: 83.91
|
562 |
+
- type: mrr_at_5
|
563 |
+
value: 84.473
|
564 |
+
- type: mrr_at_10
|
565 |
+
value: 84.769
|
566 |
+
- type: mrr_at_100
|
567 |
+
value: 84.953
|
568 |
+
- task:
|
569 |
+
type: Classification
|
570 |
+
dataset:
|
571 |
+
type: mteb/imdb
|
572 |
+
name: MTEB ImdbClassification
|
573 |
+
config: default
|
574 |
+
split: test
|
575 |
+
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
|
576 |
+
metrics:
|
577 |
+
- type: accuracy
|
578 |
+
value: 94.87799999999999
|
579 |
+
- type: ap
|
580 |
+
value: 92.5831019543702
|
581 |
+
- type: f1
|
582 |
+
value: 94.87675087619891
|
583 |
+
- task:
|
584 |
+
type: Retrieval
|
585 |
+
dataset:
|
586 |
+
type: msmarco
|
587 |
+
name: MTEB MSMARCO
|
588 |
+
config: default
|
589 |
+
split: test
|
590 |
+
revision: None
|
591 |
+
metrics:
|
592 |
+
- type: ndcg_at_1
|
593 |
+
value: 23.195
|
594 |
+
- type: ndcg_at_3
|
595 |
+
value: 34.419
|
596 |
+
- type: ndcg_at_5
|
597 |
+
value: 38.665
|
598 |
+
- type: ndcg_at_10
|
599 |
+
value: 42.549
|
600 |
+
- type: ndcg_at_100
|
601 |
+
value: 48.256
|
602 |
+
- type: map_at_1
|
603 |
+
value: 22.508
|
604 |
+
- type: map_at_3
|
605 |
+
value: 31.346
|
606 |
+
- type: map_at_5
|
607 |
+
value: 33.73
|
608 |
+
- type: map_at_10
|
609 |
+
value: 35.365
|
610 |
+
- type: map_at_100
|
611 |
+
value: 36.568
|
612 |
+
- type: recall_at_1
|
613 |
+
value: 22.508
|
614 |
+
- type: recall_at_3
|
615 |
+
value: 42.63
|
616 |
+
- type: recall_at_5
|
617 |
+
value: 52.827999999999996
|
618 |
+
- type: recall_at_10
|
619 |
+
value: 64.645
|
620 |
+
- type: recall_at_100
|
621 |
+
value: 90.852
|
622 |
+
- type: precision_at_1
|
623 |
+
value: 23.195
|
624 |
+
- type: precision_at_3
|
625 |
+
value: 14.752
|
626 |
+
- type: precision_at_5
|
627 |
+
value: 11.0
|
628 |
+
- type: precision_at_10
|
629 |
+
value: 6.755
|
630 |
+
- type: precision_at_100
|
631 |
+
value: 0.96
|
632 |
+
- type: mrr_at_1
|
633 |
+
value: 23.195
|
634 |
+
- type: mrr_at_3
|
635 |
+
value: 32.042
|
636 |
+
- type: mrr_at_5
|
637 |
+
value: 34.388000000000005
|
638 |
+
- type: mrr_at_10
|
639 |
+
value: 35.974000000000004
|
640 |
+
- type: mrr_at_100
|
641 |
+
value: 37.114000000000004
|
642 |
+
- task:
|
643 |
+
type: Classification
|
644 |
+
dataset:
|
645 |
+
type: mteb/mtop_domain
|
646 |
+
name: MTEB MTOPDomainClassification (en)
|
647 |
+
config: en
|
648 |
+
split: test
|
649 |
+
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
|
650 |
+
metrics:
|
651 |
+
- type: accuracy
|
652 |
+
value: 95.84587323301413
|
653 |
+
- type: f1
|
654 |
+
value: 95.69948889844318
|
655 |
+
- task:
|
656 |
+
type: Classification
|
657 |
+
dataset:
|
658 |
+
type: mteb/mtop_intent
|
659 |
+
name: MTEB MTOPIntentClassification (en)
|
660 |
+
config: en
|
661 |
+
split: test
|
662 |
+
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
|
663 |
+
metrics:
|
664 |
+
- type: accuracy
|
665 |
+
value: 87.08162334701322
|
666 |
+
- type: f1
|
667 |
+
value: 72.237783326283
|
668 |
+
- task:
|
669 |
+
type: Classification
|
670 |
+
dataset:
|
671 |
+
type: mteb/amazon_massive_intent
|
672 |
+
name: MTEB MassiveIntentClassification (en)
|
673 |
+
config: en
|
674 |
+
split: test
|
675 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
676 |
+
metrics:
|
677 |
+
- type: accuracy
|
678 |
+
value: 80.19502353732346
|
679 |
+
- type: f1
|
680 |
+
value: 77.732184986995
|
681 |
+
- task:
|
682 |
+
type: Classification
|
683 |
+
dataset:
|
684 |
+
type: mteb/amazon_massive_scenario
|
685 |
+
name: MTEB MassiveScenarioClassification (en)
|
686 |
+
config: en
|
687 |
+
split: test
|
688 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
689 |
+
metrics:
|
690 |
+
- type: accuracy
|
691 |
+
value: 82.26630800268998
|
692 |
+
- type: f1
|
693 |
+
value: 82.12747916248556
|
694 |
+
- task:
|
695 |
+
type: Clustering
|
696 |
+
dataset:
|
697 |
+
type: mteb/medrxiv-clustering-p2p
|
698 |
+
name: MTEB MedrxivClusteringP2P
|
699 |
+
config: default
|
700 |
+
split: test
|
701 |
+
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
|
702 |
+
metrics:
|
703 |
+
- type: v_measure
|
704 |
+
value: 36.95240450167033
|
705 |
+
- task:
|
706 |
+
type: Clustering
|
707 |
+
dataset:
|
708 |
+
type: mteb/medrxiv-clustering-s2s
|
709 |
+
name: MTEB MedrxivClusteringS2S
|
710 |
+
config: default
|
711 |
+
split: test
|
712 |
+
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
|
713 |
+
metrics:
|
714 |
+
- type: v_measure
|
715 |
+
value: 36.27758530931266
|
716 |
+
- task:
|
717 |
+
type: Reranking
|
718 |
+
dataset:
|
719 |
+
type: mteb/mind_small
|
720 |
+
name: MTEB MindSmallReranking
|
721 |
+
config: default
|
722 |
+
split: test
|
723 |
+
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
|
724 |
+
metrics:
|
725 |
+
- type: map
|
726 |
+
value: 33.35707665482982
|
727 |
+
- type: mrr
|
728 |
+
value: 34.60987842278547
|
729 |
+
- task:
|
730 |
+
type: Retrieval
|
731 |
+
dataset:
|
732 |
+
type: nfcorpus
|
733 |
+
name: MTEB NFCorpus
|
734 |
+
config: default
|
735 |
+
split: test
|
736 |
+
revision: None
|
737 |
+
metrics:
|
738 |
+
- type: ndcg_at_1
|
739 |
+
value: 47.522999999999996
|
740 |
+
- type: ndcg_at_3
|
741 |
+
value: 44.489000000000004
|
742 |
+
- type: ndcg_at_5
|
743 |
+
value: 41.92
|
744 |
+
- type: ndcg_at_10
|
745 |
+
value: 38.738
|
746 |
+
- type: ndcg_at_100
|
747 |
+
value: 35.46
|
748 |
+
- type: map_at_1
|
749 |
+
value: 5.357
|
750 |
+
- type: map_at_3
|
751 |
+
value: 10.537
|
752 |
+
- type: map_at_5
|
753 |
+
value: 12.062000000000001
|
754 |
+
- type: map_at_10
|
755 |
+
value: 14.264
|
756 |
+
- type: map_at_100
|
757 |
+
value: 18.442
|
758 |
+
- type: recall_at_1
|
759 |
+
value: 5.357
|
760 |
+
- type: recall_at_3
|
761 |
+
value: 12.499
|
762 |
+
- type: recall_at_5
|
763 |
+
value: 14.809
|
764 |
+
- type: recall_at_10
|
765 |
+
value: 18.765
|
766 |
+
- type: recall_at_100
|
767 |
+
value: 36.779
|
768 |
+
- type: precision_at_1
|
769 |
+
value: 49.226
|
770 |
+
- type: precision_at_3
|
771 |
+
value: 41.899
|
772 |
+
- type: precision_at_5
|
773 |
+
value: 36.718
|
774 |
+
- type: precision_at_10
|
775 |
+
value: 29.287999999999997
|
776 |
+
- type: precision_at_100
|
777 |
+
value: 9.22
|
778 |
+
- type: mrr_at_1
|
779 |
+
value: 49.845
|
780 |
+
- type: mrr_at_3
|
781 |
+
value: 57.121
|
782 |
+
- type: mrr_at_5
|
783 |
+
value: 58.172999999999995
|
784 |
+
- type: mrr_at_10
|
785 |
+
value: 58.906000000000006
|
786 |
+
- type: mrr_at_100
|
787 |
+
value: 59.486000000000004
|
788 |
+
- task:
|
789 |
+
type: Retrieval
|
790 |
+
dataset:
|
791 |
+
type: nq
|
792 |
+
name: MTEB NQ
|
793 |
+
config: default
|
794 |
+
split: test
|
795 |
+
revision: None
|
796 |
+
metrics:
|
797 |
+
- type: ndcg_at_1
|
798 |
+
value: 42.815999999999995
|
799 |
+
- type: ndcg_at_3
|
800 |
+
value: 53.766999999999996
|
801 |
+
- type: ndcg_at_5
|
802 |
+
value: 57.957
|
803 |
+
- type: ndcg_at_10
|
804 |
+
value: 61.661
|
805 |
+
- type: ndcg_at_100
|
806 |
+
value: 65.218
|
807 |
+
- type: map_at_1
|
808 |
+
value: 38.364
|
809 |
+
- type: map_at_3
|
810 |
+
value: 49.782
|
811 |
+
- type: map_at_5
|
812 |
+
value: 52.319
|
813 |
+
- type: map_at_10
|
814 |
+
value: 54.07300000000001
|
815 |
+
- type: map_at_100
|
816 |
+
value: 54.983000000000004
|
817 |
+
- type: recall_at_1
|
818 |
+
value: 38.364
|
819 |
+
- type: recall_at_3
|
820 |
+
value: 61.744
|
821 |
+
- type: recall_at_5
|
822 |
+
value: 71.32300000000001
|
823 |
+
- type: recall_at_10
|
824 |
+
value: 82.015
|
825 |
+
- type: recall_at_100
|
826 |
+
value: 96.978
|
827 |
+
- type: precision_at_1
|
828 |
+
value: 42.815999999999995
|
829 |
+
- type: precision_at_3
|
830 |
+
value: 23.976
|
831 |
+
- type: precision_at_5
|
832 |
+
value: 16.866
|
833 |
+
- type: precision_at_10
|
834 |
+
value: 9.806
|
835 |
+
- type: precision_at_100
|
836 |
+
value: 1.1769999999999998
|
837 |
+
- type: mrr_at_1
|
838 |
+
value: 42.845
|
839 |
+
- type: mrr_at_3
|
840 |
+
value: 53.307
|
841 |
+
- type: mrr_at_5
|
842 |
+
value: 55.434000000000005
|
843 |
+
- type: mrr_at_10
|
844 |
+
value: 56.702
|
845 |
+
- type: mrr_at_100
|
846 |
+
value: 57.342000000000006
|
847 |
+
- task:
|
848 |
+
type: Retrieval
|
849 |
+
dataset:
|
850 |
+
type: quora
|
851 |
+
name: MTEB QuoraRetrieval
|
852 |
+
config: default
|
853 |
+
split: test
|
854 |
+
revision: None
|
855 |
+
metrics:
|
856 |
+
- type: ndcg_at_1
|
857 |
+
value: 82.46
|
858 |
+
- type: ndcg_at_3
|
859 |
+
value: 86.774
|
860 |
+
- type: ndcg_at_5
|
861 |
+
value: 88.256
|
862 |
+
- type: ndcg_at_10
|
863 |
+
value: 89.35
|
864 |
+
- type: ndcg_at_100
|
865 |
+
value: 90.46499999999999
|
866 |
+
- type: map_at_1
|
867 |
+
value: 71.562
|
868 |
+
- type: map_at_3
|
869 |
+
value: 82.948
|
870 |
+
- type: map_at_5
|
871 |
+
value: 84.786
|
872 |
+
- type: map_at_10
|
873 |
+
value: 85.82300000000001
|
874 |
+
- type: map_at_100
|
875 |
+
value: 86.453
|
876 |
+
- type: recall_at_1
|
877 |
+
value: 71.562
|
878 |
+
- type: recall_at_3
|
879 |
+
value: 88.51
|
880 |
+
- type: recall_at_5
|
881 |
+
value: 92.795
|
882 |
+
- type: recall_at_10
|
883 |
+
value: 95.998
|
884 |
+
- type: recall_at_100
|
885 |
+
value: 99.701
|
886 |
+
- type: precision_at_1
|
887 |
+
value: 82.46
|
888 |
+
- type: precision_at_3
|
889 |
+
value: 38.1
|
890 |
+
- type: precision_at_5
|
891 |
+
value: 24.990000000000002
|
892 |
+
- type: precision_at_10
|
893 |
+
value: 13.553999999999998
|
894 |
+
- type: precision_at_100
|
895 |
+
value: 1.539
|
896 |
+
- type: mrr_at_1
|
897 |
+
value: 82.43
|
898 |
+
- type: mrr_at_3
|
899 |
+
value: 87.653
|
900 |
+
- type: mrr_at_5
|
901 |
+
value: 88.26899999999999
|
902 |
+
- type: mrr_at_10
|
903 |
+
value: 88.505
|
904 |
+
- type: mrr_at_100
|
905 |
+
value: 88.601
|
906 |
+
- task:
|
907 |
+
type: Clustering
|
908 |
+
dataset:
|
909 |
+
type: mteb/reddit-clustering
|
910 |
+
name: MTEB RedditClustering
|
911 |
+
config: default
|
912 |
+
split: test
|
913 |
+
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
|
914 |
+
metrics:
|
915 |
+
- type: v_measure
|
916 |
+
value: 57.928338007609256
|
917 |
+
- task:
|
918 |
+
type: Clustering
|
919 |
+
dataset:
|
920 |
+
type: mteb/reddit-clustering-p2p
|
921 |
+
name: MTEB RedditClusteringP2P
|
922 |
+
config: default
|
923 |
+
split: test
|
924 |
+
revision: 282350215ef01743dc01b456c7f5241fa8937f16
|
925 |
+
metrics:
|
926 |
+
- type: v_measure
|
927 |
+
value: 65.28915417473826
|
928 |
+
- task:
|
929 |
+
type: Retrieval
|
930 |
+
dataset:
|
931 |
+
type: scidocs
|
932 |
+
name: MTEB SCIDOCS
|
933 |
+
config: default
|
934 |
+
split: test
|
935 |
+
revision: None
|
936 |
+
metrics:
|
937 |
+
- type: ndcg_at_1
|
938 |
+
value: 17.2
|
939 |
+
- type: ndcg_at_3
|
940 |
+
value: 15.856
|
941 |
+
- type: ndcg_at_5
|
942 |
+
value: 13.983
|
943 |
+
- type: ndcg_at_10
|
944 |
+
value: 16.628999999999998
|
945 |
+
- type: ndcg_at_100
|
946 |
+
value: 23.845
|
947 |
+
- type: map_at_1
|
948 |
+
value: 3.4750000000000005
|
949 |
+
- type: map_at_3
|
950 |
+
value: 6.905
|
951 |
+
- type: map_at_5
|
952 |
+
value: 8.254
|
953 |
+
- type: map_at_10
|
954 |
+
value: 9.474
|
955 |
+
- type: map_at_100
|
956 |
+
value: 11.242
|
957 |
+
- type: recall_at_1
|
958 |
+
value: 3.4750000000000005
|
959 |
+
- type: recall_at_3
|
960 |
+
value: 9.298
|
961 |
+
- type: recall_at_5
|
962 |
+
value: 12.817
|
963 |
+
- type: recall_at_10
|
964 |
+
value: 17.675
|
965 |
+
- type: recall_at_100
|
966 |
+
value: 38.678000000000004
|
967 |
+
- type: precision_at_1
|
968 |
+
value: 17.2
|
969 |
+
- type: precision_at_3
|
970 |
+
value: 15.299999999999999
|
971 |
+
- type: precision_at_5
|
972 |
+
value: 12.64
|
973 |
+
- type: precision_at_10
|
974 |
+
value: 8.72
|
975 |
+
- type: precision_at_100
|
976 |
+
value: 1.907
|
977 |
+
- type: mrr_at_1
|
978 |
+
value: 17.2
|
979 |
+
- type: mrr_at_3
|
980 |
+
value: 25.55
|
981 |
+
- type: mrr_at_5
|
982 |
+
value: 27.485
|
983 |
+
- type: mrr_at_10
|
984 |
+
value: 28.809
|
985 |
+
- type: mrr_at_100
|
986 |
+
value: 29.964000000000002
|
987 |
+
- task:
|
988 |
+
type: STS
|
989 |
+
dataset:
|
990 |
+
type: mteb/sickr-sts
|
991 |
+
name: MTEB SICK-R
|
992 |
+
config: default
|
993 |
+
split: test
|
994 |
+
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
|
995 |
+
metrics:
|
996 |
+
- type: cos_sim_pearson
|
997 |
+
value: 86.10434430387332
|
998 |
+
- type: cos_sim_spearman
|
999 |
+
value: 82.46041161692649
|
1000 |
+
- type: euclidean_pearson
|
1001 |
+
value: 83.4010092798136
|
1002 |
+
- type: euclidean_spearman
|
1003 |
+
value: 82.46040715308601
|
1004 |
+
- type: manhattan_pearson
|
1005 |
+
value: 83.6702316837156
|
1006 |
+
- type: manhattan_spearman
|
1007 |
+
value: 82.72271392303014
|
1008 |
+
- task:
|
1009 |
+
type: STS
|
1010 |
+
dataset:
|
1011 |
+
type: mteb/sts12-sts
|
1012 |
+
name: MTEB STS12
|
1013 |
+
config: default
|
1014 |
+
split: test
|
1015 |
+
revision: a0d554a64d88156834ff5ae9920b964011b16384
|
1016 |
+
metrics:
|
1017 |
+
- type: cos_sim_pearson
|
1018 |
+
value: 87.3179771524676
|
1019 |
+
- type: cos_sim_spearman
|
1020 |
+
value: 80.15194914870666
|
1021 |
+
- type: euclidean_pearson
|
1022 |
+
value: 84.54005271342946
|
1023 |
+
- type: euclidean_spearman
|
1024 |
+
value: 80.15194914870666
|
1025 |
+
- type: manhattan_pearson
|
1026 |
+
value: 85.24410357734307
|
1027 |
+
- type: manhattan_spearman
|
1028 |
+
value: 80.78274673604562
|
1029 |
+
- task:
|
1030 |
+
type: STS
|
1031 |
+
dataset:
|
1032 |
+
type: mteb/sts13-sts
|
1033 |
+
name: MTEB STS13
|
1034 |
+
config: default
|
1035 |
+
split: test
|
1036 |
+
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
|
1037 |
+
metrics:
|
1038 |
+
- type: cos_sim_pearson
|
1039 |
+
value: 89.2691354894402
|
1040 |
+
- type: cos_sim_spearman
|
1041 |
+
value: 89.94300436293618
|
1042 |
+
- type: euclidean_pearson
|
1043 |
+
value: 89.5600067781475
|
1044 |
+
- type: euclidean_spearman
|
1045 |
+
value: 89.942989691344
|
1046 |
+
- type: manhattan_pearson
|
1047 |
+
value: 89.80327997794308
|
1048 |
+
- type: manhattan_spearman
|
1049 |
+
value: 90.3964860275568
|
1050 |
+
- task:
|
1051 |
+
type: STS
|
1052 |
+
dataset:
|
1053 |
+
type: mteb/sts14-sts
|
1054 |
+
name: MTEB STS14
|
1055 |
+
config: default
|
1056 |
+
split: test
|
1057 |
+
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
|
1058 |
+
metrics:
|
1059 |
+
- type: cos_sim_pearson
|
1060 |
+
value: 87.68003396295498
|
1061 |
+
- type: cos_sim_spearman
|
1062 |
+
value: 86.23848649310362
|
1063 |
+
- type: euclidean_pearson
|
1064 |
+
value: 87.0702308813695
|
1065 |
+
- type: euclidean_spearman
|
1066 |
+
value: 86.23848649310362
|
1067 |
+
- type: manhattan_pearson
|
1068 |
+
value: 87.24495415360472
|
1069 |
+
- type: manhattan_spearman
|
1070 |
+
value: 86.58198464997109
|
1071 |
+
- task:
|
1072 |
+
type: STS
|
1073 |
+
dataset:
|
1074 |
+
type: mteb/sts15-sts
|
1075 |
+
name: MTEB STS15
|
1076 |
+
config: default
|
1077 |
+
split: test
|
1078 |
+
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
|
1079 |
+
metrics:
|
1080 |
+
- type: cos_sim_pearson
|
1081 |
+
value: 90.25643329096215
|
1082 |
+
- type: cos_sim_spearman
|
1083 |
+
value: 91.19520084590636
|
1084 |
+
- type: euclidean_pearson
|
1085 |
+
value: 90.68579446788728
|
1086 |
+
- type: euclidean_spearman
|
1087 |
+
value: 91.19519611831312
|
1088 |
+
- type: manhattan_pearson
|
1089 |
+
value: 90.83476867273104
|
1090 |
+
- type: manhattan_spearman
|
1091 |
+
value: 91.4569817842705
|
1092 |
+
- task:
|
1093 |
+
type: STS
|
1094 |
+
dataset:
|
1095 |
+
type: mteb/sts16-sts
|
1096 |
+
name: MTEB STS16
|
1097 |
+
config: default
|
1098 |
+
split: test
|
1099 |
+
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
|
1100 |
+
metrics:
|
1101 |
+
- type: cos_sim_pearson
|
1102 |
+
value: 86.41175694023282
|
1103 |
+
- type: cos_sim_spearman
|
1104 |
+
value: 88.18744495989392
|
1105 |
+
- type: euclidean_pearson
|
1106 |
+
value: 87.60085709987156
|
1107 |
+
- type: euclidean_spearman
|
1108 |
+
value: 88.18773792681107
|
1109 |
+
- type: manhattan_pearson
|
1110 |
+
value: 87.83199472909764
|
1111 |
+
- type: manhattan_spearman
|
1112 |
+
value: 88.45824161471776
|
1113 |
+
- task:
|
1114 |
+
type: STS
|
1115 |
+
dataset:
|
1116 |
+
type: mteb/sts17-crosslingual-sts
|
1117 |
+
name: MTEB STS17 (en-en)
|
1118 |
+
config: en-en
|
1119 |
+
split: test
|
1120 |
+
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
|
1121 |
+
metrics:
|
1122 |
+
- type: cos_sim_pearson
|
1123 |
+
value: 91.78311335565503
|
1124 |
+
- type: cos_sim_spearman
|
1125 |
+
value: 91.93416269793802
|
1126 |
+
- type: euclidean_pearson
|
1127 |
+
value: 91.84163160890154
|
1128 |
+
- type: euclidean_spearman
|
1129 |
+
value: 91.93416269793802
|
1130 |
+
- type: manhattan_pearson
|
1131 |
+
value: 91.77053255749301
|
1132 |
+
- type: manhattan_spearman
|
1133 |
+
value: 91.67392623286098
|
1134 |
+
- task:
|
1135 |
+
type: STS
|
1136 |
+
dataset:
|
1137 |
+
type: mteb/sts22-crosslingual-sts
|
1138 |
+
name: MTEB STS22 (en)
|
1139 |
+
config: en
|
1140 |
+
split: test
|
1141 |
+
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
1142 |
+
metrics:
|
1143 |
+
- type: cos_sim_pearson
|
1144 |
+
value: 68.2137857919086
|
1145 |
+
- type: cos_sim_spearman
|
1146 |
+
value: 68.31928639693375
|
1147 |
+
- type: euclidean_pearson
|
1148 |
+
value: 69.96072053688385
|
1149 |
+
- type: euclidean_spearman
|
1150 |
+
value: 68.31928639693375
|
1151 |
+
- type: manhattan_pearson
|
1152 |
+
value: 70.47736299273389
|
1153 |
+
- type: manhattan_spearman
|
1154 |
+
value: 68.72439259356818
|
1155 |
+
- task:
|
1156 |
+
type: STS
|
1157 |
+
dataset:
|
1158 |
+
type: mteb/stsbenchmark-sts
|
1159 |
+
name: MTEB STSBenchmark
|
1160 |
+
config: default
|
1161 |
+
split: test
|
1162 |
+
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
|
1163 |
+
metrics:
|
1164 |
+
- type: cos_sim_pearson
|
1165 |
+
value: 88.16092476703817
|
1166 |
+
- type: cos_sim_spearman
|
1167 |
+
value: 89.20507562822989
|
1168 |
+
- type: euclidean_pearson
|
1169 |
+
value: 88.91358225424611
|
1170 |
+
- type: euclidean_spearman
|
1171 |
+
value: 89.20505548241839
|
1172 |
+
- type: manhattan_pearson
|
1173 |
+
value: 88.98787306839809
|
1174 |
+
- type: manhattan_spearman
|
1175 |
+
value: 89.37338458483269
|
1176 |
+
- task:
|
1177 |
+
type: Reranking
|
1178 |
+
dataset:
|
1179 |
+
type: mteb/scidocs-reranking
|
1180 |
+
name: MTEB SciDocsRR
|
1181 |
+
config: default
|
1182 |
+
split: test
|
1183 |
+
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
|
1184 |
+
metrics:
|
1185 |
+
- type: map
|
1186 |
+
value: 87.29108971888714
|
1187 |
+
- type: mrr
|
1188 |
+
value: 96.62042024787124
|
1189 |
+
- task:
|
1190 |
+
type: Retrieval
|
1191 |
+
dataset:
|
1192 |
+
type: scifact
|
1193 |
+
name: MTEB SciFact
|
1194 |
+
config: default
|
1195 |
+
split: test
|
1196 |
+
revision: None
|
1197 |
+
metrics:
|
1198 |
+
- type: ndcg_at_1
|
1199 |
+
value: 63.333
|
1200 |
+
- type: ndcg_at_3
|
1201 |
+
value: 72.768
|
1202 |
+
- type: ndcg_at_5
|
1203 |
+
value: 75.124
|
1204 |
+
- type: ndcg_at_10
|
1205 |
+
value: 77.178
|
1206 |
+
- type: ndcg_at_100
|
1207 |
+
value: 78.769
|
1208 |
+
- type: map_at_1
|
1209 |
+
value: 60.9
|
1210 |
+
- type: map_at_3
|
1211 |
+
value: 69.69999999999999
|
1212 |
+
- type: map_at_5
|
1213 |
+
value: 71.345
|
1214 |
+
- type: map_at_10
|
1215 |
+
value: 72.36200000000001
|
1216 |
+
- type: map_at_100
|
1217 |
+
value: 72.783
|
1218 |
+
- type: recall_at_1
|
1219 |
+
value: 60.9
|
1220 |
+
- type: recall_at_3
|
1221 |
+
value: 79.172
|
1222 |
+
- type: recall_at_5
|
1223 |
+
value: 84.917
|
1224 |
+
- type: recall_at_10
|
1225 |
+
value: 90.756
|
1226 |
+
- type: recall_at_100
|
1227 |
+
value: 97.667
|
1228 |
+
- type: precision_at_1
|
1229 |
+
value: 63.333
|
1230 |
+
- type: precision_at_3
|
1231 |
+
value: 28.555999999999997
|
1232 |
+
- type: precision_at_5
|
1233 |
+
value: 18.8
|
1234 |
+
- type: precision_at_10
|
1235 |
+
value: 10.233
|
1236 |
+
- type: precision_at_100
|
1237 |
+
value: 1.107
|
1238 |
+
- type: mrr_at_1
|
1239 |
+
value: 63.333
|
1240 |
+
- type: mrr_at_3
|
1241 |
+
value: 71.27799999999999
|
1242 |
+
- type: mrr_at_5
|
1243 |
+
value: 72.478
|
1244 |
+
- type: mrr_at_10
|
1245 |
+
value: 73.163
|
1246 |
+
- type: mrr_at_100
|
1247 |
+
value: 73.457
|
1248 |
+
- task:
|
1249 |
+
type: PairClassification
|
1250 |
+
dataset:
|
1251 |
+
type: mteb/sprintduplicatequestions-pairclassification
|
1252 |
+
name: MTEB SprintDuplicateQuestions
|
1253 |
+
config: default
|
1254 |
+
split: test
|
1255 |
+
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
|
1256 |
+
metrics:
|
1257 |
+
- type: cos_sim_accuracy
|
1258 |
+
value: 99.8009900990099
|
1259 |
+
- type: cos_sim_ap
|
1260 |
+
value: 95.46920445134404
|
1261 |
+
- type: cos_sim_f1
|
1262 |
+
value: 89.70814132104455
|
1263 |
+
- type: cos_sim_precision
|
1264 |
+
value: 91.9202518363064
|
1265 |
+
- type: cos_sim_recall
|
1266 |
+
value: 87.6
|
1267 |
+
- type: dot_accuracy
|
1268 |
+
value: 99.8009900990099
|
1269 |
+
- type: dot_ap
|
1270 |
+
value: 95.46920445134404
|
1271 |
+
- type: dot_f1
|
1272 |
+
value: 89.70814132104455
|
1273 |
+
- type: dot_precision
|
1274 |
+
value: 91.9202518363064
|
1275 |
+
- type: dot_recall
|
1276 |
+
value: 87.6
|
1277 |
+
- type: euclidean_accuracy
|
1278 |
+
value: 99.8009900990099
|
1279 |
+
- type: euclidean_ap
|
1280 |
+
value: 95.46924273007079
|
1281 |
+
- type: euclidean_f1
|
1282 |
+
value: 89.70814132104455
|
1283 |
+
- type: euclidean_precision
|
1284 |
+
value: 91.9202518363064
|
1285 |
+
- type: euclidean_recall
|
1286 |
+
value: 87.6
|
1287 |
+
- type: manhattan_accuracy
|
1288 |
+
value: 99.81188118811882
|
1289 |
+
- type: manhattan_ap
|
1290 |
+
value: 95.77631677784113
|
1291 |
+
- type: manhattan_f1
|
1292 |
+
value: 90.26639344262296
|
1293 |
+
- type: manhattan_precision
|
1294 |
+
value: 92.5420168067227
|
1295 |
+
- type: manhattan_recall
|
1296 |
+
value: 88.1
|
1297 |
+
- type: max_accuracy
|
1298 |
+
value: 99.81188118811882
|
1299 |
+
- type: max_ap
|
1300 |
+
value: 95.77631677784113
|
1301 |
+
- type: max_f1
|
1302 |
+
value: 90.26639344262296
|
1303 |
+
- task:
|
1304 |
+
type: Clustering
|
1305 |
+
dataset:
|
1306 |
+
type: mteb/stackexchange-clustering
|
1307 |
+
name: MTEB StackExchangeClustering
|
1308 |
+
config: default
|
1309 |
+
split: test
|
1310 |
+
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
|
1311 |
+
metrics:
|
1312 |
+
- type: v_measure
|
1313 |
+
value: 71.59238280333025
|
1314 |
+
- task:
|
1315 |
+
type: Clustering
|
1316 |
+
dataset:
|
1317 |
+
type: mteb/stackexchange-clustering-p2p
|
1318 |
+
name: MTEB StackExchangeClusteringP2P
|
1319 |
+
config: default
|
1320 |
+
split: test
|
1321 |
+
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
|
1322 |
+
metrics:
|
1323 |
+
- type: v_measure
|
1324 |
+
value: 39.012562075214035
|
1325 |
+
- task:
|
1326 |
+
type: Reranking
|
1327 |
+
dataset:
|
1328 |
+
type: mteb/stackoverflowdupquestions-reranking
|
1329 |
+
name: MTEB StackOverflowDupQuestions
|
1330 |
+
config: default
|
1331 |
+
split: test
|
1332 |
+
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
|
1333 |
+
metrics:
|
1334 |
+
- type: map
|
1335 |
+
value: 55.16521497700657
|
1336 |
+
- type: mrr
|
1337 |
+
value: 56.1779427680163
|
1338 |
+
- task:
|
1339 |
+
type: Summarization
|
1340 |
+
dataset:
|
1341 |
+
type: mteb/summeval
|
1342 |
+
name: MTEB SummEval
|
1343 |
+
config: default
|
1344 |
+
split: test
|
1345 |
+
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
|
1346 |
+
metrics:
|
1347 |
+
- type: cos_sim_pearson
|
1348 |
+
value: 31.04402552863106
|
1349 |
+
- type: cos_sim_spearman
|
1350 |
+
value: 31.05558230938988
|
1351 |
+
- type: dot_pearson
|
1352 |
+
value: 31.04400838015153
|
1353 |
+
- type: dot_spearman
|
1354 |
+
value: 31.05558230938988
|
1355 |
+
- task:
|
1356 |
+
type: Retrieval
|
1357 |
+
dataset:
|
1358 |
+
type: trec-covid
|
1359 |
+
name: MTEB TRECCOVID
|
1360 |
+
config: default
|
1361 |
+
split: test
|
1362 |
+
revision: None
|
1363 |
+
metrics:
|
1364 |
+
- type: ndcg_at_1
|
1365 |
+
value: 91.0
|
1366 |
+
- type: ndcg_at_3
|
1367 |
+
value: 92.34599999999999
|
1368 |
+
- type: ndcg_at_5
|
1369 |
+
value: 90.89399999999999
|
1370 |
+
- type: ndcg_at_10
|
1371 |
+
value: 87.433
|
1372 |
+
- type: ndcg_at_100
|
1373 |
+
value: 67.06400000000001
|
1374 |
+
- type: map_at_1
|
1375 |
+
value: 0.241
|
1376 |
+
- type: map_at_3
|
1377 |
+
value: 0.735
|
1378 |
+
- type: map_at_5
|
1379 |
+
value: 1.216
|
1380 |
+
- type: map_at_10
|
1381 |
+
value: 2.317
|
1382 |
+
- type: map_at_100
|
1383 |
+
value: 14.151
|
1384 |
+
- type: recall_at_1
|
1385 |
+
value: 0.241
|
1386 |
+
- type: recall_at_3
|
1387 |
+
value: 0.76
|
1388 |
+
- type: recall_at_5
|
1389 |
+
value: 1.254
|
1390 |
+
- type: recall_at_10
|
1391 |
+
value: 2.421
|
1392 |
+
- type: recall_at_100
|
1393 |
+
value: 16.715
|
1394 |
+
- type: precision_at_1
|
1395 |
+
value: 94.0
|
1396 |
+
- type: precision_at_3
|
1397 |
+
value: 96.0
|
1398 |
+
- type: precision_at_5
|
1399 |
+
value: 94.8
|
1400 |
+
- type: precision_at_10
|
1401 |
+
value: 91.4
|
1402 |
+
- type: precision_at_100
|
1403 |
+
value: 68.24
|
1404 |
+
- type: mrr_at_1
|
1405 |
+
value: 94.0
|
1406 |
+
- type: mrr_at_3
|
1407 |
+
value: 96.667
|
1408 |
+
- type: mrr_at_5
|
1409 |
+
value: 96.667
|
1410 |
+
- type: mrr_at_10
|
1411 |
+
value: 96.667
|
1412 |
+
- type: mrr_at_100
|
1413 |
+
value: 96.667
|
1414 |
+
- task:
|
1415 |
+
type: Retrieval
|
1416 |
+
dataset:
|
1417 |
+
type: webis-touche2020
|
1418 |
+
name: MTEB Touche2020
|
1419 |
+
config: default
|
1420 |
+
split: test
|
1421 |
+
revision: None
|
1422 |
+
metrics:
|
1423 |
+
- type: ndcg_at_1
|
1424 |
+
value: 26.531
|
1425 |
+
- type: ndcg_at_3
|
1426 |
+
value: 27.728
|
1427 |
+
- type: ndcg_at_5
|
1428 |
+
value: 25.668000000000003
|
1429 |
+
- type: ndcg_at_10
|
1430 |
+
value: 25.785999999999998
|
1431 |
+
- type: ndcg_at_100
|
1432 |
+
value: 35.623
|
1433 |
+
- type: map_at_1
|
1434 |
+
value: 2.076
|
1435 |
+
- type: map_at_3
|
1436 |
+
value: 5.29
|
1437 |
+
- type: map_at_5
|
1438 |
+
value: 7.292999999999999
|
1439 |
+
- type: map_at_10
|
1440 |
+
value: 9.81
|
1441 |
+
- type: map_at_100
|
1442 |
+
value: 15.461
|
1443 |
+
- type: recall_at_1
|
1444 |
+
value: 2.076
|
1445 |
+
- type: recall_at_3
|
1446 |
+
value: 6.7250000000000005
|
1447 |
+
- type: recall_at_5
|
1448 |
+
value: 9.808
|
1449 |
+
- type: recall_at_10
|
1450 |
+
value: 16.467000000000002
|
1451 |
+
- type: recall_at_100
|
1452 |
+
value: 45.109
|
1453 |
+
- type: precision_at_1
|
1454 |
+
value: 28.571
|
1455 |
+
- type: precision_at_3
|
1456 |
+
value: 29.252
|
1457 |
+
- type: precision_at_5
|
1458 |
+
value: 25.714
|
1459 |
+
- type: precision_at_10
|
1460 |
+
value: 23.265
|
1461 |
+
- type: precision_at_100
|
1462 |
+
value: 7.184
|
1463 |
+
- type: mrr_at_1
|
1464 |
+
value: 28.571
|
1465 |
+
- type: mrr_at_3
|
1466 |
+
value: 42.857
|
1467 |
+
- type: mrr_at_5
|
1468 |
+
value: 44.184
|
1469 |
+
- type: mrr_at_10
|
1470 |
+
value: 47.564
|
1471 |
+
- type: mrr_at_100
|
1472 |
+
value: 48.142
|
1473 |
+
- task:
|
1474 |
+
type: Classification
|
1475 |
+
dataset:
|
1476 |
+
type: mteb/toxic_conversations_50k
|
1477 |
+
name: MTEB ToxicConversationsClassification
|
1478 |
+
config: default
|
1479 |
+
split: test
|
1480 |
+
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
|
1481 |
+
metrics:
|
1482 |
+
- type: accuracy
|
1483 |
+
value: 68.43159999999999
|
1484 |
+
- type: ap
|
1485 |
+
value: 14.08119146524032
|
1486 |
+
- type: f1
|
1487 |
+
value: 53.26032318755336
|
1488 |
+
- task:
|
1489 |
+
type: Classification
|
1490 |
+
dataset:
|
1491 |
+
type: mteb/tweet_sentiment_extraction
|
1492 |
+
name: MTEB TweetSentimentExtractionClassification
|
1493 |
+
config: default
|
1494 |
+
split: test
|
1495 |
+
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
|
1496 |
+
metrics:
|
1497 |
+
- type: accuracy
|
1498 |
+
value: 63.82852292020373
|
1499 |
+
- type: f1
|
1500 |
+
value: 64.14509521870399
|
1501 |
+
- task:
|
1502 |
+
type: Clustering
|
1503 |
+
dataset:
|
1504 |
+
type: mteb/twentynewsgroups-clustering
|
1505 |
+
name: MTEB TwentyNewsgroupsClustering
|
1506 |
+
config: default
|
1507 |
+
split: test
|
1508 |
+
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
|
1509 |
+
metrics:
|
1510 |
+
- type: v_measure
|
1511 |
+
value: 55.252554461698566
|
1512 |
+
- task:
|
1513 |
+
type: PairClassification
|
1514 |
+
dataset:
|
1515 |
+
type: mteb/twittersemeval2015-pairclassification
|
1516 |
+
name: MTEB TwitterSemEval2015
|
1517 |
+
config: default
|
1518 |
+
split: test
|
1519 |
+
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
|
1520 |
+
metrics:
|
1521 |
+
- type: cos_sim_accuracy
|
1522 |
+
value: 88.54383978065208
|
1523 |
+
- type: cos_sim_ap
|
1524 |
+
value: 81.67495128150328
|
1525 |
+
- type: cos_sim_f1
|
1526 |
+
value: 74.58161532864419
|
1527 |
+
- type: cos_sim_precision
|
1528 |
+
value: 69.00807899461401
|
1529 |
+
- type: cos_sim_recall
|
1530 |
+
value: 81.13456464379946
|
1531 |
+
- type: dot_accuracy
|
1532 |
+
value: 88.54383978065208
|
1533 |
+
- type: dot_ap
|
1534 |
+
value: 81.6748330747088
|
1535 |
+
- type: dot_f1
|
1536 |
+
value: 74.58161532864419
|
1537 |
+
- type: dot_precision
|
1538 |
+
value: 69.00807899461401
|
1539 |
+
- type: dot_recall
|
1540 |
+
value: 81.13456464379946
|
1541 |
+
- type: euclidean_accuracy
|
1542 |
+
value: 88.54383978065208
|
1543 |
+
- type: euclidean_ap
|
1544 |
+
value: 81.67496006818212
|
1545 |
+
- type: euclidean_f1
|
1546 |
+
value: 74.58161532864419
|
1547 |
+
- type: euclidean_precision
|
1548 |
+
value: 69.00807899461401
|
1549 |
+
- type: euclidean_recall
|
1550 |
+
value: 81.13456464379946
|
1551 |
+
- type: manhattan_accuracy
|
1552 |
+
value: 88.40674733265782
|
1553 |
+
- type: manhattan_ap
|
1554 |
+
value: 81.56036996969941
|
1555 |
+
- type: manhattan_f1
|
1556 |
+
value: 74.33063129452223
|
1557 |
+
- type: manhattan_precision
|
1558 |
+
value: 69.53125
|
1559 |
+
- type: manhattan_recall
|
1560 |
+
value: 79.84168865435356
|
1561 |
+
- type: max_accuracy
|
1562 |
+
value: 88.54383978065208
|
1563 |
+
- type: max_ap
|
1564 |
+
value: 81.67496006818212
|
1565 |
+
- type: max_f1
|
1566 |
+
value: 74.58161532864419
|
1567 |
+
- task:
|
1568 |
+
type: PairClassification
|
1569 |
+
dataset:
|
1570 |
+
type: mteb/twitterurlcorpus-pairclassification
|
1571 |
+
name: MTEB TwitterURLCorpus
|
1572 |
+
config: default
|
1573 |
+
split: test
|
1574 |
+
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
|
1575 |
+
metrics:
|
1576 |
+
- type: cos_sim_accuracy
|
1577 |
+
value: 89.75627740908915
|
1578 |
+
- type: cos_sim_ap
|
1579 |
+
value: 87.41911504007292
|
1580 |
+
- type: cos_sim_f1
|
1581 |
+
value: 79.91742008969888
|
1582 |
+
- type: cos_sim_precision
|
1583 |
+
value: 74.31484178472131
|
1584 |
+
- type: cos_sim_recall
|
1585 |
+
value: 86.43363104404065
|
1586 |
+
- type: dot_accuracy
|
1587 |
+
value: 89.75627740908915
|
1588 |
+
- type: dot_ap
|
1589 |
+
value: 87.41910845717851
|
1590 |
+
- type: dot_f1
|
1591 |
+
value: 79.91742008969888
|
1592 |
+
- type: dot_precision
|
1593 |
+
value: 74.31484178472131
|
1594 |
+
- type: dot_recall
|
1595 |
+
value: 86.43363104404065
|
1596 |
+
- type: euclidean_accuracy
|
1597 |
+
value: 89.75627740908915
|
1598 |
+
- type: euclidean_ap
|
1599 |
+
value: 87.41912150448005
|
1600 |
+
- type: euclidean_f1
|
1601 |
+
value: 79.91742008969888
|
1602 |
+
- type: euclidean_precision
|
1603 |
+
value: 74.31484178472131
|
1604 |
+
- type: euclidean_recall
|
1605 |
+
value: 86.43363104404065
|
1606 |
+
- type: manhattan_accuracy
|
1607 |
+
value: 89.76597974152986
|
1608 |
+
- type: manhattan_ap
|
1609 |
+
value: 87.49835162128704
|
1610 |
+
- type: manhattan_f1
|
1611 |
+
value: 80.05401656994779
|
1612 |
+
- type: manhattan_precision
|
1613 |
+
value: 76.10158906390951
|
1614 |
+
- type: manhattan_recall
|
1615 |
+
value: 84.43948259932245
|
1616 |
+
- type: max_accuracy
|
1617 |
+
value: 89.76597974152986
|
1618 |
+
- type: max_ap
|
1619 |
+
value: 87.49835162128704
|
1620 |
+
- type: max_f1
|
1621 |
+
value: 80.05401656994779
|
1622 |
+
language:
|
1623 |
+
- en
|
1624 |
license: mit
|
1625 |
---
|
1626 |
+
|
1627 |
+
## SPEED-embedding-7b-instruct
|
1628 |
+
|
1629 |
+
[Little Giants: Synthesizing High-Quality Embedding Data at Scale](https://arxiv.org/pdf/2410.18634.pdf). Haonan Chen, Liang Wang, Nan Yang, Yutao Zhu, Ziliang Zhao, Furu Wei, Zhicheng Dou, arXiv 2024
|
1630 |
+
|
1631 |
+
This model has 32 layers and the embedding size is 4096.
|
1632 |
+
|
1633 |
+
## Usage
|
1634 |
+
|
1635 |
+
Below is an example to encode queries and passages from the MS-MARCO passage ranking dataset.
|
1636 |
+
|
1637 |
+
### Transformers
|
1638 |
+
|
1639 |
+
```python
|
1640 |
+
import torch
|
1641 |
+
import torch.nn.functional as F
|
1642 |
+
|
1643 |
+
from torch import Tensor
|
1644 |
+
from transformers import AutoTokenizer, AutoModel
|
1645 |
+
|
1646 |
+
|
1647 |
+
def last_token_pool(last_hidden_states: Tensor,
|
1648 |
+
attention_mask: Tensor) -> Tensor:
|
1649 |
+
left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0])
|
1650 |
+
if left_padding:
|
1651 |
+
return last_hidden_states[:, -1]
|
1652 |
+
else:
|
1653 |
+
sequence_lengths = attention_mask.sum(dim=1) - 1
|
1654 |
+
batch_size = last_hidden_states.shape[0]
|
1655 |
+
return last_hidden_states[torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths]
|
1656 |
+
|
1657 |
+
|
1658 |
+
def get_detailed_instruct(task_description: str, query: str) -> str:
|
1659 |
+
return f'Instruct: {task_description}\nQuery: {query}'
|
1660 |
+
|
1661 |
+
|
1662 |
+
# Each query must come with a one-sentence instruction that describes the task
|
1663 |
+
task = 'Given a web search query, retrieve relevant passages that answer the query'
|
1664 |
+
queries = [
|
1665 |
+
get_detailed_instruct(task, 'how much protein should a female eat'),
|
1666 |
+
get_detailed_instruct(task, 'summit define')
|
1667 |
+
]
|
1668 |
+
# No need to add instruction for retrieval documents
|
1669 |
+
documents = [
|
1670 |
+
"As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.",
|
1671 |
+
"Definition of summit for English Language Learners. : 1 the highest point of a mountain : the top of a mountain. : 2 the highest level. : 3 a meeting or series of meetings between the leaders of two or more governments."
|
1672 |
+
]
|
1673 |
+
input_texts = queries + documents
|
1674 |
+
|
1675 |
+
tokenizer = AutoTokenizer.from_pretrained('Haon-Chen/speed-embedding-7b-instruct')
|
1676 |
+
model = AutoModel.from_pretrained('Haon-Chen/speed-embedding-7b-instruct')
|
1677 |
+
|
1678 |
+
max_length = 4096
|
1679 |
+
# Tokenize the input texts
|
1680 |
+
batch_dict = tokenizer(input_texts, max_length=max_length, padding=True, truncation=True, return_tensors='pt')
|
1681 |
+
|
1682 |
+
outputs = model(**batch_dict)
|
1683 |
+
embeddings = last_token_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
|
1684 |
+
|
1685 |
+
# normalize embeddings
|
1686 |
+
embeddings = F.normalize(embeddings, p=2, dim=1)
|
1687 |
+
scores = (embeddings[:2] @ embeddings[2:].T) * 100
|
1688 |
+
print(scores.tolist())
|
1689 |
+
```
|
1690 |
+
|
1691 |
+
## MTEB Benchmark Evaluation
|
1692 |
+
|
1693 |
+
Check out [unilm/e5](https://github.com/microsoft/unilm/tree/master/e5) to reproduce evaluation results
|
1694 |
+
on the [BEIR](https://arxiv.org/abs/2104.08663) and [MTEB benchmark](https://arxiv.org/abs/2210.07316).
|
1695 |
+
|
1696 |
+
## FAQ
|
1697 |
+
|
1698 |
+
**1. Do I need to add instructions to the query?**
|
1699 |
+
|
1700 |
+
Yes, this is how the model is trained, otherwise you will see a performance degradation.
|
1701 |
+
The task definition should be a one-sentence instruction that describes the task.
|
1702 |
+
This is a way to customize text embeddings for different scenarios through natural language instructions.
|
1703 |
+
|
1704 |
+
Please check out [unilm/e5/utils.py](https://github.com/microsoft/unilm/blob/9c0f1ff7ca53431fe47d2637dfe253643d94185b/e5/utils.py#L106) for instructions we used for evaluation.
|
1705 |
+
|
1706 |
+
On the other hand, there is no need to add instructions to the document side.
|
1707 |
+
|
1708 |
+
**2. Why are my reproduced results slightly different from reported in the model card?**
|
1709 |
+
|
1710 |
+
Different versions of `transformers` and `pytorch` could cause negligible but non-zero performance differences.
|
1711 |
+
|
1712 |
+
**3. Where are the LoRA-only weights?**
|
1713 |
+
|
1714 |
+
You can find the LoRA-only weights at [https://huggingface.co/Haon-Chen/speed-embedding-7b-instruct/tree/main/lora](https://huggingface.co/Haon-Chen/speed-embedding-7b-instruct/tree/main/lora).
|
1715 |
+
|
1716 |
+
## Citation
|
1717 |
+
|
1718 |
+
If you find our paper or models helpful, please consider cite as follows:
|
1719 |
+
|
1720 |
+
```bibtex
|
1721 |
+
@article{chen2024little,
|
1722 |
+
title={Little Giants: Synthesizing High-Quality Embedding Data at Scale},
|
1723 |
+
author={Chen, Haonan and Wang, Liang and Yang, Nan and Zhu, Yutao and Zhao, Ziliang and Wei, Furu and Dou, Zhicheng},
|
1724 |
+
journal={arXiv preprint arXiv:2410.18634},
|
1725 |
+
year={2024}
|
1726 |
+
}
|
1727 |
+
```
|
1728 |
+
|
1729 |
+
## Limitations
|
1730 |
+
|
1731 |
+
Using this model for inputs longer than 4096 tokens is not recommended.
|