File size: 4,540 Bytes
1bd8201 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 |
---
license: mit
language:
- en
base_model:
- meta-llama/Meta-Llama-3-8B
pipeline_tag: text-generation
tags:
- transformers
---
## SPEED-synthesis-7b-senior
[Little Giants: Synthesizing High-Quality Embedding Data at Scale](https://arxiv.org/pdf/2410.18634.pdf). Haonan Chen, Liang Wang, Nan Yang, Yutao Zhu, Ziliang Zhao, Furu Wei, Zhicheng Dou, arXiv 2024
This is the data revisor model of SPEED.
## Usage
Below is an example to revise s2s data using this revisor.
The prompts and misc scripts can be found in our [github page](https://github.com/haon-chen/SPEED)
### Transformers
```python
import torch
import os
import random
import numpy as np
import json
from torch import Tensor
from transformers import AutoTokenizer, AutoModelForCausalLM
from typing import List, Dict, Optional
from prompts_aligning import get_create_all_revise_data_prompt
from utils import fix_common_json_errors_and_loads_for_revisor
LLAMA3_PROMPT = """
{prompt} [/INST]
""".strip("\n")
# Each query must come with a one-sentence instruction that describes the task
old_prompts = [
"You have been assigned a text matching task: Match a Stockard Channing movie title with a brief plot description.\n\nYour mission is to write one example for this task in JSON format. The JSON object must contain the following keys:\n- \"input\": a string, a random input specified by the task.\n- \"positive_document\": a string, a relevant document for the \"input\" according to the task.\n\nPlease adhere to the following guidelines:\n- The values of all fields should be in English.\n- Both the \"input\" and \"positive_document\" should be very short (a sentence or a phrase), avoid substantial word overlaps, otherwise the task would be too easy.\n- The \"input\" and \"positive_document\" should be independent of each other.\n\nYour output must always be a JSON object only, do not explain yourself or output anything else. Be creative!"
]
old_data = [
{"input": "Stockard Channing in 'The Business of Strangers', directed by Patrick Stettner.", "positive_document": "In 'The Business of Strangers', Channing stars as a businesswoman who embarks on a ruthless journey, after which she undergoes a drastic change. She faces many challenges while pursuing her goals and eventually comes out stronger."},
]
language = 'English'
prompts = [LLAMA3_PROMPT.format(prompt=get_create_all_revise_data_prompt(prompt=old_prompt, data=json.dumps(data))[1]['content']) for old_prompt in old_prompts for data in old_data]
tokenizer = AutoTokenizer.from_pretrained('Haon-Chen/speed-synthesis-7b-revisor')
model = AutoModelForCausalLM.from_pretrained('Haon-Chen/speed-synthesis-7b-revisor')
model.to("cuda:0")
tokenizer.pad_token = tokenizer.pad_token or tokenizer.eos_token
tokenizer.padding_side = "left"
tokenizer.truncation_side = "left"
# Tokenize the input texts
encodes = tokenizer(prompts, padding="longest", add_special_tokens=True, return_tensors="pt")
input_ids = encodes.input_ids.to(model.device)
attention_mask = encodes.attention_mask.to(model.device)
GEN_CONFIG = {"do_sample":True, "temperature": 1.0, "top_p": 1.0, "max_new_tokens": 800}
output = model.generate(
input_ids=input_ids,
attention_mask=attention_mask,
pad_token_id = tokenizer.eos_token_id,
**GEN_CONFIG
)
output_texts = tokenizer.batch_decode(output, skip_special_tokens=True, clean_up_tokenization_spaces=False)
batch_results = []
for i in range(len(output_texts)):
batch_results.append(output_texts[i][len(prompts[i]):].strip(' '))
bad_cnt=0
outputs = []
for i, result in enumerate(batch_results):
try:
content = fix_common_json_errors_and_loads_for_revisor(result)
revision = content["revision"]
reason = content["reason"]
user_query = revision.get("input", "")
positive_document = revision.get("positive_document", "")
except:
bad_cnt+=1
continue
out_data = {
"query": user_query,
"positives": [positive_document],
"negatives": [],
"language": "English",
"reason": reason,
}
outputs.append(out_data)
print(bad_cnt)
print(outputs)
```
## Citation
If you find our paper or models helpful, please consider cite as follows:
```bibtex
@article{chen2024little,
title={Little Giants: Synthesizing High-Quality Embedding Data at Scale},
author={Chen, Haonan and Wang, Liang and Yang, Nan and Zhu, Yutao and Zhao, Ziliang and Wei, Furu and Dou, Zhicheng},
journal={arXiv preprint arXiv:2410.18634},
year={2024}
}
```
## Limitations |