--- license: mit language: - en base_model: - meta-llama/Meta-Llama-3-8B pipeline_tag: text-generation tags: - transformers --- ## SPEED-synthesis-7b-senior [Little Giants: Synthesizing High-Quality Embedding Data at Scale](https://arxiv.org/pdf/2410.18634.pdf). Haonan Chen, Liang Wang, Nan Yang, Yutao Zhu, Ziliang Zhao, Furu Wei, Zhicheng Dou, arXiv 2024 This is the data revisor model of SPEED. ## Usage Below is an example to revise s2s data using this revisor. The prompts and misc scripts can be found in our [github page](https://github.com/haon-chen/SPEED) ### Transformers ```python import torch import os import random import numpy as np import json from torch import Tensor from transformers import AutoTokenizer, AutoModelForCausalLM from typing import List, Dict, Optional from prompts_aligning import get_create_all_revise_data_prompt from utils import fix_common_json_errors_and_loads_for_revisor LLAMA3_PROMPT = """ {prompt} [/INST] """.strip("\n") # Each query must come with a one-sentence instruction that describes the task old_prompts = [ "You have been assigned a text matching task: Match a Stockard Channing movie title with a brief plot description.\n\nYour mission is to write one example for this task in JSON format. The JSON object must contain the following keys:\n- \"input\": a string, a random input specified by the task.\n- \"positive_document\": a string, a relevant document for the \"input\" according to the task.\n\nPlease adhere to the following guidelines:\n- The values of all fields should be in English.\n- Both the \"input\" and \"positive_document\" should be very short (a sentence or a phrase), avoid substantial word overlaps, otherwise the task would be too easy.\n- The \"input\" and \"positive_document\" should be independent of each other.\n\nYour output must always be a JSON object only, do not explain yourself or output anything else. Be creative!" ] old_data = [ {"input": "Stockard Channing in 'The Business of Strangers', directed by Patrick Stettner.", "positive_document": "In 'The Business of Strangers', Channing stars as a businesswoman who embarks on a ruthless journey, after which she undergoes a drastic change. She faces many challenges while pursuing her goals and eventually comes out stronger."}, ] language = 'English' prompts = [LLAMA3_PROMPT.format(prompt=get_create_all_revise_data_prompt(prompt=old_prompt, data=json.dumps(data))[1]['content']) for old_prompt in old_prompts for data in old_data] tokenizer = AutoTokenizer.from_pretrained('Haon-Chen/speed-synthesis-7b-revisor') model = AutoModelForCausalLM.from_pretrained('Haon-Chen/speed-synthesis-7b-revisor') model.to("cuda:0") tokenizer.pad_token = tokenizer.pad_token or tokenizer.eos_token tokenizer.padding_side = "left" tokenizer.truncation_side = "left" # Tokenize the input texts encodes = tokenizer(prompts, padding="longest", add_special_tokens=True, return_tensors="pt") input_ids = encodes.input_ids.to(model.device) attention_mask = encodes.attention_mask.to(model.device) GEN_CONFIG = {"do_sample":True, "temperature": 1.0, "top_p": 1.0, "max_new_tokens": 800} output = model.generate( input_ids=input_ids, attention_mask=attention_mask, pad_token_id = tokenizer.eos_token_id, **GEN_CONFIG ) output_texts = tokenizer.batch_decode(output, skip_special_tokens=True, clean_up_tokenization_spaces=False) batch_results = [] for i in range(len(output_texts)): batch_results.append(output_texts[i][len(prompts[i]):].strip(' ')) bad_cnt=0 outputs = [] for i, result in enumerate(batch_results): try: content = fix_common_json_errors_and_loads_for_revisor(result) revision = content["revision"] reason = content["reason"] user_query = revision.get("input", "") positive_document = revision.get("positive_document", "") except: bad_cnt+=1 continue out_data = { "query": user_query, "positives": [positive_document], "negatives": [], "language": "English", "reason": reason, } outputs.append(out_data) print(bad_cnt) print(outputs) ``` ## Citation If you find our paper or models helpful, please consider cite as follows: ```bibtex @article{chen2024little, title={Little Giants: Synthesizing High-Quality Embedding Data at Scale}, author={Chen, Haonan and Wang, Liang and Yang, Nan and Zhu, Yutao and Zhao, Ziliang and Wei, Furu and Dou, Zhicheng}, journal={arXiv preprint arXiv:2410.18634}, year={2024} } ``` ## Limitations