File size: 1,751 Bytes
61acb64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
license: apache-2.0
base_model: HariprasathSB/whisper-tamil-vulnerable
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: whisper-tamil-vulnerablee
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# whisper-tamil-vulnerablee

This model is a fine-tuned version of [HariprasathSB/whisper-tamil-vulnerable](https://huggingface.co/HariprasathSB/whisper-tamil-vulnerable) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1757
- Wer: 76.6682

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- training_steps: 1000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer     |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 0.0216        | 1.7544 | 200  | 1.0816          | 78.3139 |
| 0.0191        | 3.5088 | 400  | 1.0777          | 79.3327 |
| 0.0069        | 5.2632 | 600  | 1.1236          | 77.1048 |
| 0.003         | 7.0175 | 800  | 1.1772          | 78.3699 |
| 0.0004        | 8.7719 | 1000 | 1.1757          | 76.6682 |


### Framework versions

- Transformers 4.41.0
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1