Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -3
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
CHANGED
@@ -1,3 +1,37 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -23.84 +/- 148.38
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7161b215a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7161b21630>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7161b216c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7161b21750>", "_build": "<function ActorCriticPolicy._build at 0x7f7161b217e0>", "forward": "<function ActorCriticPolicy.forward at 0x7f7161b21870>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7161b21900>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7161b21990>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7161b21a20>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7161b21ab0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7161b21b40>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7161b21bd0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f7161cccd00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": 32, "action_noise": null, "start_time": 1716315088735034028, "learning_rate": 0.001, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2j1zxDjrE/fzS5PHiQB72NZTo8qWKvPQAAAAAAAAAAAAMlPpVzoz/ABTM/agdRvr89vbwfVg4+AAAAAAAAAADNDC0+XCxqvLk6FTvNPDS5kQLHvSKpPboAAIA/AACAPy3FcT4ztr8/fhiYPIl4uDt2OFg/enXkPgAAAAAAAAAA2o7Kvfjuoz8AEpC+nnn9vQtxb7yN2E2+AAAAAAAAAACabYm8U4YrP9eNH7//G3C+Lj06vuZmOb8AAAAAAAAAAAAsd7ywppI/W1jZviKqhzvcD4m+SqAavwAAAAAAAAAAc96KvXrmrj9KFUE9UxLuvSr/F7+mzJO+AAAAAAAAAAAzw/e9JieqP1bwWz3GJ327H83/viOKtL4AAAAAAAAAAJp+7LwvHq8+GdEjPyCe2r7xZhK+nkY4PwAAAAAAAAAAM3ELPA1xoT9et4c+lr8IvuLgUr2tteQ+AAAAAAAAAAAAPYW9iINtP75gr74hXqA9V3vzvqx5ML8AAAAAAAAAAADUDb6faSs/iqSWvt/38b0uY0G/4gFavwAAAAAAAAAAk01RPlKAnTx+ci89jBpSvCqmZb71Mnm+AAAAAAAAAACaodQ9J6lUP4g13T3T1FA8P4gtP5GWLD8AAAAAAAAAAAB6Cz1Lk0A/A8NHPD884b5fyLk/ao6zPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwGbxBfa6BiGMAWyUTRcBjAF0lEdAlAr4s/Y8MnV9lChoBkfAPWD9GZuyeWgHTQcBaAhHQJQMbLGJemh1fZQoaAZHwGAINpVS4vxoB0utaAhHQJQM4UIsyzp1fZQoaAZHQGm3ebd8ArBoB00JA2gIR0CUDtuWrwOOdX2UKGgGR8Bt+/YL9deIaAdNHgFoCEdAlA8LGecx03V9lChoBkfAQdGi1y/9HmgHTQABaAhHQJQP2j59E1F1fZQoaAZHwGnfWhRIjGFoB00VAWgIR0CUElocrAgxdX2UKGgGR8BgqNNYbKigaAdL6mgIR0CUFDqD9OyndX2UKGgGR8Bt1x5Pdl/ZaAdNYQFoCEdAlBTJ17pmmXV9lChoBkdAWKe+ZgG8mWgHTegDaAhHQJQVyzKLbYd1fZQoaAZHwGp9XOObRWtoB01sAWgIR0CUFfZsbedkdX2UKGgGR0BgKTNt65XmaAdN6ANoCEdAlBjt5UtI1HV9lChoBke/8o1dgOSW7mgHS/xoCEdAlBm6ebutwXV9lChoBkfAQOMOXmeUZGgHS9ZoCEdAlBzELtu1nnV9lChoBkfAbUPQv6CUYGgHS9ZoCEdAlB3g1FYuCnV9lChoBkdAcEZLaEi+tmgHTXoBaAhHQJQfbSSeRPp1fZQoaAZHwEGp5KvmozhoB00VAWgIR0CUH/+4b0e2dX2UKGgGR8BqewG+sYEXaAdL+mgIR0CUIaMoMKCydX2UKGgGR8A0UItlI3BIaAdL72gIR0CUI9Gm1pj+dX2UKGgGR8Bm6Mmnfl6raAdL9WgIR0CUI/cp9ZzQdX2UKGgGR8Boi65sj3VTaAdNLgFoCEdAlCX37UG3WnV9lChoBkdANh8j/uLJjmgHS8VoCEdAlCdXzcynDXV9lChoBkdAahh2cJ+lTGgHTfMBaAhHQJQp5lyzXz11fZQoaAZHQG7Gdfb9If9oB00MAmgIR0CUKtbSZ0CBdX2UKGgGR0BYMpXyRSxaaAdN6ANoCEdAlCxtc8kleHV9lChoBkfAaH4xFiKBNGgHTQ0BaAhHQJQsl1dPci51fZQoaAZHwGrZZP/JeVtoB01hAWgIR0CULN0O3DvWdX2UKGgGR8BQq2DtgKF7aAdNXwFoCEdAlC1jFdcB2nV9lChoBkdAZh8SOinHemgHTRoDaAhHQJQvyMm4RVZ1fZQoaAZHwGjk3p4bCJpoB007AWgIR0CUMIlAu7HydX2UKGgGR0Bt+3zBhx5taAdNCgJoCEdAlDJD544ZM3V9lChoBkfAaJDK3d9DyGgHTQsBaAhHQJQyevjfek51fZQoaAZHwGejQW3z+WJoB00BAWgIR0CUM64593KTdX2UKGgGR8AtDHz6JqIraAdNUQFoCEdAlDO2vfTCtXV9lChoBkfAFjKhtcfNimgHTTQBaAhHQJQ0Om0mdAh1fZQoaAZHwGk3N5MURFtoB00rAWgIR0CUNsUEgW8AdX2UKGgGR8A80N21UlzEaAdLyGgIR0CUNwjAzpHJdX2UKGgGR8Blc8QZn+Q2aAdL5mgIR0CUN/TrmhdudX2UKGgGR8AnwwB5ooNNaAdL7GgIR0CUN/4YJmdzdX2UKGgGR8Ba6kZvUBn0aAdL5mgIR0CUOr4bjtG/dX2UKGgGR0Bnmqx3V09yaAdNDQJoCEdAlDsTyauwHXV9lChoBkdAcSPykbgjyGgHTVwBaAhHQJQ7QqvvBrN1fZQoaAZHwF8VoHs1KoRoB0ulaAhHQJQ8GntOVPh1fZQoaAZHQGeUGSyMUAVoB015AWgIR0CUPUHR1HOKdX2UKGgGR8BpM3Xd0q6OaAdNGAFoCEdAlD2/USZjQXV9lChoBkdANisWweNkv2gHTQUBaAhHQJQ+e+TNdJJ1fZQoaAZHwGljCQcPvrpoB0v3aAhHQJQ/LzJ6po91fZQoaAZHQF8I00FbFCNoB03oA2gIR0CUQF9R77bddX2UKGgGR0Bqm2WrwOOKaAdNLAFoCEdAlEFoKc/dI3V9lChoBkfAZsw2CNCJGmgHS+toCEdAlEGmKZUkwHV9lChoBkfAaKsjvd/KAGgHS/BoCEdAlEKhX0XgtXV9lChoBkdAbb2RxLkCFWgHTWUBaAhHQJRCoGnn+yZ1fZQoaAZHwGojHfdhy81oB0vwaAhHQJRCqrIYFaB1fZQoaAZHQBaipzcRDkVoB00eAWgIR0CUQ0ci4axYdX2UKGgGR8A20pEhJRO2aAdL32gIR0CUREUPxx1gdX2UKGgGR8A06LTQVsUJaAdLtWgIR0CURXdlum78dX2UKGgGR8Bkqv1rZamoaAdNCwFoCEdAlEWZN9H+ZXV9lChoBkfAZs9CHARChWgHTQQBaAhHQJRG3YGt6ol1fZQoaAZHwEvYIi1RceNoB0vjaAhHQJRHA1+AmRh1fZQoaAZHwE420vXbudBoB00qAWgIR0CUSjtkWhysdX2UKGgGR0Bvp+1+iJwbaAdNWwFoCEdAlEqD3yqdYnV9lChoBkfAaUdARChN/WgHS+doCEdAlEwDHjp9qnV9lChoBkfAaJUWGh24eGgHTQcBaAhHQJROTUkOZst1fZQoaAZHwDEzKuB+WnloB0vwaAhHQJROclKK5091fZQoaAZHQAlfn4fwI+poB0v4aAhHQJRO5C8e0Xx1fZQoaAZHwEjqFMZgogFoB00dAWgIR0CUUQ29cry2dX2UKGgGR8BqGTW9US7HaAdL+mgIR0CUUa9q1w5vdX2UKGgGR0BoKXgm7aqTaAdNeQFoCEdAlFLgZflZHXV9lChoBkfAK0TxwyZa3mgHS/doCEdAlFNanJkoW3V9lChoBkfAaGf2ZiNKiGgHTTgBaAhHQJRTbuOS4e91fZQoaAZHwD+cZvUBnzxoB00DAWgIR0CUU7G0NSZSdX2UKGgGR8Bkc/mHP/rCaAdL+GgIR0CUVFTYdyT7dX2UKGgGR0AsvQFcIJJHaAdL/WgIR0CUVtFbmlqKdX2UKGgGR0BqGTPv8ZUDaAdNYQFoCEdAlFhrKq4pdHV9lChoBkfAZDHjtoi9qWgHS+ZoCEdAlFjJDZ13dXV9lChoBkfAagz6fra/RGgHTUIBaAhHQJRZ/tw71Zl1fZQoaAZHQFZsHEdeY2NoB03oA2gIR0CUWyazNUwSdX2UKGgGR8A1F6N2ki2VaAdNHgFoCEdAlFustwrDqHV9lChoBkfAZsh0163RX2gHS+toCEdAlF2C31BdEHV9lChoBkfAcJJnTAnDzmgHTXYBaAhHQJRdhLPD50t1fZQoaAZHwGbslme18b9oB00GAWgIR0CUXdloUSIydX2UKGgGR0BqUvJ7sv7FaAdNCwFoCEdAlF6Pacqe9XV9lChoBkfAJlnanJkoW2gHS/VoCEdAlF6p+2E0znV9lChoBkfAUqxlsguAZ2gHTWIBaAhHQJRgNb0OEuh1fZQoaAZHQHDUOARTS9doB02iAWgIR0CUYPJLuhK2dX2UKGgGR0BwKGRigCfZaAdNnAFoCEdAlGMcny/bkHV9lChoBkfANa/oePq9oWgHS7xoCEdAlGO1Vo6CDnV9lChoBkfAasTlEJBw/GgHTToBaAhHQJRke5PM0P91fZQoaAZHwDg+3OObRWtoB0vfaAhHQJRk4eyRjjJ1fZQoaAZHwGMnhj4HooxoB0vmaAhHQJRnm0ngHeJ1fZQoaAZHwDnsQL/jsD5oB0v2aAhHQJRoas1baAZ1fZQoaAZHQGyqlFMIu5BoB030AWgIR0CUaPYsunMudX2UKGgGR0BuExsuWa+faAdNbAFoCEdAlGpZIczZYnV9lChoBkfALHVgx8D0UWgHTQkBaAhHQJRqmy5Zr591fZQoaAZHwAvuIyj59E1oB0v9aAhHQJRr7ytmthd1fZQoaAZHwEjKcGTs6aNoB0vKaAhHQJRsyLtNSIh1fZQoaAZHQFSnK0UoKD1oB03oA2gIR0CUbPW1c+qzdX2UKGgGR0BtwgHqu8sdaAdNygFoCEdAlG0To+wC83V9lChoBkfAa9KFg2IfsGgHTV8BaAhHQJRtqKvV3EB1fZQoaAZHwEBHFUhmoR9oB0vMaAhHQJRuAbn5i3J1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVoAEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoG4wUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoJooR3oScf8uX3deH5dH1Wj2dyACMA2luY5SKEU/TAjY6sHd6IwowoZt0YOMAdYwKaGFzX3VpbnQzMpRLAIwIdWludGVnZXKUSwB1YnViLg==", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 16, "n_steps": 2048, "gamma": 0.1, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:59c363f0e4401dd21466eebbc35cea64d88e261235fddf473beee2be8a9af6ab
|
3 |
+
size 148308
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f7161b215a0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7161b21630>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7161b216c0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7161b21750>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f7161b217e0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f7161b21870>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7161b21900>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7161b21990>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f7161b21a20>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7161b21ab0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7161b21b40>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7161b21bd0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f7161cccd00>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": 32,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1716315088735034028,
|
30 |
+
"learning_rate": 0.001,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2j1zxDjrE/fzS5PHiQB72NZTo8qWKvPQAAAAAAAAAAAAMlPpVzoz/ABTM/agdRvr89vbwfVg4+AAAAAAAAAADNDC0+XCxqvLk6FTvNPDS5kQLHvSKpPboAAIA/AACAPy3FcT4ztr8/fhiYPIl4uDt2OFg/enXkPgAAAAAAAAAA2o7Kvfjuoz8AEpC+nnn9vQtxb7yN2E2+AAAAAAAAAACabYm8U4YrP9eNH7//G3C+Lj06vuZmOb8AAAAAAAAAAAAsd7ywppI/W1jZviKqhzvcD4m+SqAavwAAAAAAAAAAc96KvXrmrj9KFUE9UxLuvSr/F7+mzJO+AAAAAAAAAAAzw/e9JieqP1bwWz3GJ327H83/viOKtL4AAAAAAAAAAJp+7LwvHq8+GdEjPyCe2r7xZhK+nkY4PwAAAAAAAAAAM3ELPA1xoT9et4c+lr8IvuLgUr2tteQ+AAAAAAAAAAAAPYW9iINtP75gr74hXqA9V3vzvqx5ML8AAAAAAAAAAADUDb6faSs/iqSWvt/38b0uY0G/4gFavwAAAAAAAAAAk01RPlKAnTx+ci89jBpSvCqmZb71Mnm+AAAAAAAAAACaodQ9J6lUP4g13T3T1FA8P4gtP5GWLD8AAAAAAAAAAAB6Cz1Lk0A/A8NHPD884b5fyLk/ao6zPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVHgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwGbxBfa6BiGMAWyUTRcBjAF0lEdAlAr4s/Y8MnV9lChoBkfAPWD9GZuyeWgHTQcBaAhHQJQMbLGJemh1fZQoaAZHwGAINpVS4vxoB0utaAhHQJQM4UIsyzp1fZQoaAZHQGm3ebd8ArBoB00JA2gIR0CUDtuWrwOOdX2UKGgGR8Bt+/YL9deIaAdNHgFoCEdAlA8LGecx03V9lChoBkfAQdGi1y/9HmgHTQABaAhHQJQP2j59E1F1fZQoaAZHwGnfWhRIjGFoB00VAWgIR0CUElocrAgxdX2UKGgGR8BgqNNYbKigaAdL6mgIR0CUFDqD9OyndX2UKGgGR8Bt1x5Pdl/ZaAdNYQFoCEdAlBTJ17pmmXV9lChoBkdAWKe+ZgG8mWgHTegDaAhHQJQVyzKLbYd1fZQoaAZHwGp9XOObRWtoB01sAWgIR0CUFfZsbedkdX2UKGgGR0BgKTNt65XmaAdN6ANoCEdAlBjt5UtI1HV9lChoBke/8o1dgOSW7mgHS/xoCEdAlBm6ebutwXV9lChoBkfAQOMOXmeUZGgHS9ZoCEdAlBzELtu1nnV9lChoBkfAbUPQv6CUYGgHS9ZoCEdAlB3g1FYuCnV9lChoBkdAcEZLaEi+tmgHTXoBaAhHQJQfbSSeRPp1fZQoaAZHwEGp5KvmozhoB00VAWgIR0CUH/+4b0e2dX2UKGgGR8BqewG+sYEXaAdL+mgIR0CUIaMoMKCydX2UKGgGR8A0UItlI3BIaAdL72gIR0CUI9Gm1pj+dX2UKGgGR8Bm6Mmnfl6raAdL9WgIR0CUI/cp9ZzQdX2UKGgGR8Boi65sj3VTaAdNLgFoCEdAlCX37UG3WnV9lChoBkdANh8j/uLJjmgHS8VoCEdAlCdXzcynDXV9lChoBkdAahh2cJ+lTGgHTfMBaAhHQJQp5lyzXz11fZQoaAZHQG7Gdfb9If9oB00MAmgIR0CUKtbSZ0CBdX2UKGgGR0BYMpXyRSxaaAdN6ANoCEdAlCxtc8kleHV9lChoBkfAaH4xFiKBNGgHTQ0BaAhHQJQsl1dPci51fZQoaAZHwGrZZP/JeVtoB01hAWgIR0CULN0O3DvWdX2UKGgGR8BQq2DtgKF7aAdNXwFoCEdAlC1jFdcB2nV9lChoBkdAZh8SOinHemgHTRoDaAhHQJQvyMm4RVZ1fZQoaAZHwGjk3p4bCJpoB007AWgIR0CUMIlAu7HydX2UKGgGR0Bt+3zBhx5taAdNCgJoCEdAlDJD544ZM3V9lChoBkfAaJDK3d9DyGgHTQsBaAhHQJQyevjfek51fZQoaAZHwGejQW3z+WJoB00BAWgIR0CUM64593KTdX2UKGgGR8AtDHz6JqIraAdNUQFoCEdAlDO2vfTCtXV9lChoBkfAFjKhtcfNimgHTTQBaAhHQJQ0Om0mdAh1fZQoaAZHwGk3N5MURFtoB00rAWgIR0CUNsUEgW8AdX2UKGgGR8A80N21UlzEaAdLyGgIR0CUNwjAzpHJdX2UKGgGR8Blc8QZn+Q2aAdL5mgIR0CUN/TrmhdudX2UKGgGR8AnwwB5ooNNaAdL7GgIR0CUN/4YJmdzdX2UKGgGR8Ba6kZvUBn0aAdL5mgIR0CUOr4bjtG/dX2UKGgGR0Bnmqx3V09yaAdNDQJoCEdAlDsTyauwHXV9lChoBkdAcSPykbgjyGgHTVwBaAhHQJQ7QqvvBrN1fZQoaAZHwF8VoHs1KoRoB0ulaAhHQJQ8GntOVPh1fZQoaAZHQGeUGSyMUAVoB015AWgIR0CUPUHR1HOKdX2UKGgGR8BpM3Xd0q6OaAdNGAFoCEdAlD2/USZjQXV9lChoBkdANisWweNkv2gHTQUBaAhHQJQ+e+TNdJJ1fZQoaAZHwGljCQcPvrpoB0v3aAhHQJQ/LzJ6po91fZQoaAZHQF8I00FbFCNoB03oA2gIR0CUQF9R77bddX2UKGgGR0Bqm2WrwOOKaAdNLAFoCEdAlEFoKc/dI3V9lChoBkfAZsw2CNCJGmgHS+toCEdAlEGmKZUkwHV9lChoBkfAaKsjvd/KAGgHS/BoCEdAlEKhX0XgtXV9lChoBkdAbb2RxLkCFWgHTWUBaAhHQJRCoGnn+yZ1fZQoaAZHwGojHfdhy81oB0vwaAhHQJRCqrIYFaB1fZQoaAZHQBaipzcRDkVoB00eAWgIR0CUQ0ci4axYdX2UKGgGR8A20pEhJRO2aAdL32gIR0CUREUPxx1gdX2UKGgGR8A06LTQVsUJaAdLtWgIR0CURXdlum78dX2UKGgGR8Bkqv1rZamoaAdNCwFoCEdAlEWZN9H+ZXV9lChoBkfAZs9CHARChWgHTQQBaAhHQJRG3YGt6ol1fZQoaAZHwEvYIi1RceNoB0vjaAhHQJRHA1+AmRh1fZQoaAZHwE420vXbudBoB00qAWgIR0CUSjtkWhysdX2UKGgGR0Bvp+1+iJwbaAdNWwFoCEdAlEqD3yqdYnV9lChoBkfAaUdARChN/WgHS+doCEdAlEwDHjp9qnV9lChoBkfAaJUWGh24eGgHTQcBaAhHQJROTUkOZst1fZQoaAZHwDEzKuB+WnloB0vwaAhHQJROclKK5091fZQoaAZHQAlfn4fwI+poB0v4aAhHQJRO5C8e0Xx1fZQoaAZHwEjqFMZgogFoB00dAWgIR0CUUQ29cry2dX2UKGgGR8BqGTW9US7HaAdL+mgIR0CUUa9q1w5vdX2UKGgGR0BoKXgm7aqTaAdNeQFoCEdAlFLgZflZHXV9lChoBkfAK0TxwyZa3mgHS/doCEdAlFNanJkoW3V9lChoBkfAaGf2ZiNKiGgHTTgBaAhHQJRTbuOS4e91fZQoaAZHwD+cZvUBnzxoB00DAWgIR0CUU7G0NSZSdX2UKGgGR8Bkc/mHP/rCaAdL+GgIR0CUVFTYdyT7dX2UKGgGR0AsvQFcIJJHaAdL/WgIR0CUVtFbmlqKdX2UKGgGR0BqGTPv8ZUDaAdNYQFoCEdAlFhrKq4pdHV9lChoBkfAZDHjtoi9qWgHS+ZoCEdAlFjJDZ13dXV9lChoBkfAagz6fra/RGgHTUIBaAhHQJRZ/tw71Zl1fZQoaAZHQFZsHEdeY2NoB03oA2gIR0CUWyazNUwSdX2UKGgGR8A1F6N2ki2VaAdNHgFoCEdAlFustwrDqHV9lChoBkfAZsh0163RX2gHS+toCEdAlF2C31BdEHV9lChoBkfAcJJnTAnDzmgHTXYBaAhHQJRdhLPD50t1fZQoaAZHwGbslme18b9oB00GAWgIR0CUXdloUSIydX2UKGgGR0BqUvJ7sv7FaAdNCwFoCEdAlF6Pacqe9XV9lChoBkfAJlnanJkoW2gHS/VoCEdAlF6p+2E0znV9lChoBkfAUqxlsguAZ2gHTWIBaAhHQJRgNb0OEuh1fZQoaAZHQHDUOARTS9doB02iAWgIR0CUYPJLuhK2dX2UKGgGR0BwKGRigCfZaAdNnAFoCEdAlGMcny/bkHV9lChoBkfANa/oePq9oWgHS7xoCEdAlGO1Vo6CDnV9lChoBkfAasTlEJBw/GgHTToBaAhHQJRke5PM0P91fZQoaAZHwDg+3OObRWtoB0vfaAhHQJRk4eyRjjJ1fZQoaAZHwGMnhj4HooxoB0vmaAhHQJRnm0ngHeJ1fZQoaAZHwDnsQL/jsD5oB0v2aAhHQJRoas1baAZ1fZQoaAZHQGyqlFMIu5BoB030AWgIR0CUaPYsunMudX2UKGgGR0BuExsuWa+faAdNbAFoCEdAlGpZIczZYnV9lChoBkfALHVgx8D0UWgHTQkBaAhHQJRqmy5Zr591fZQoaAZHwAvuIyj59E1oB0v9aAhHQJRr7ytmthd1fZQoaAZHwEjKcGTs6aNoB0vKaAhHQJRsyLtNSIh1fZQoaAZHQFSnK0UoKD1oB03oA2gIR0CUbPW1c+qzdX2UKGgGR0BtwgHqu8sdaAdNygFoCEdAlG0To+wC83V9lChoBkfAa9KFg2IfsGgHTV8BaAhHQJRtqKvV3EB1fZQoaAZHwEBHFUhmoR9oB0vMaAhHQJRuAbn5i3J1ZS4="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 124,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWVoAEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoG4wUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoJooR3oScf8uX3deH5dH1Wj2dyACMA2luY5SKEU/TAjY6sHd6IwowoZt0YOMAdYwKaGFzX3VpbnQzMpRLAIwIdWludGVnZXKUSwB1YnViLg==",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": "Generator(PCG64)"
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 2048,
|
81 |
+
"gamma": 0.1,
|
82 |
+
"gae_lambda": 0.95,
|
83 |
+
"ent_coef": 0.0,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cf986534b03fd6b93284ff7a3dd7deffe5ce733b251f89209a7a7c629bbb8297
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f7301f0ffe655fd28831b37a109d8abb8473ac87f07b68f4d8b8296b77bd725b
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.3.0+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.25.2
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (189 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -23.835938499999997, "std_reward": 148.38254101955152, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-05-21T18:37:59.181524"}
|