Harveenchadha
commited on
Commit
•
5d69493
1
Parent(s):
c24b594
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: ta
|
3 |
+
#datasets:
|
4 |
+
#- Interspeech 2021
|
5 |
+
metrics:
|
6 |
+
- wer
|
7 |
+
tags:
|
8 |
+
- audio
|
9 |
+
- automatic-speech-recognition
|
10 |
+
- speech
|
11 |
+
license: MIT
|
12 |
+
model-index:
|
13 |
+
- name: Wav2Vec2 Vakyansh Tamil Model by Harveen Chadha
|
14 |
+
results:
|
15 |
+
- task:
|
16 |
+
name: Speech Recognition
|
17 |
+
type: automatic-speech-recognition
|
18 |
+
dataset:
|
19 |
+
name: Common Voice ta
|
20 |
+
type: common_voice
|
21 |
+
args: ta
|
22 |
+
metrics:
|
23 |
+
- name: Test WER
|
24 |
+
type: wer
|
25 |
+
value: 33.17
|
26 |
+
---
|
27 |
+
|
28 |
+
## Pretrained Model
|
29 |
+
|
30 |
+
Fine-tuned on Multilingual Pretrained Model [CLSRIL-23](https://arxiv.org/abs/2107.07402). The original fairseq checkpoint is present [here](https://github.com/Open-Speech-EkStep/vakyansh-models). When using this model, make sure that your speech input is sampled at 16kHz.
|
31 |
+
|
32 |
+
**Note: The result from this model is without a language model so you may witness a higher WER in some cases.**
|
33 |
+
|
34 |
+
## Dataset
|
35 |
+
|
36 |
+
This model was trained on 4200 hours of Hindi Labelled Data. The labelled data is not present in public domain as of now.
|
37 |
+
|
38 |
+
## Training Script
|
39 |
+
|
40 |
+
Models were trained using experimental platform setup by Vakyansh team at Ekstep. Here is the [training repository](https://github.com/Open-Speech-EkStep/vakyansh-wav2vec2-experimentation).
|
41 |
+
|
42 |
+
In case you want to explore training logs on wandb they are [here](https://wandb.ai/harveenchadha/hindi_finetuning_multilingual?workspace=user-harveenchadha).
|
43 |
+
|
44 |
+
|
45 |
+
## [Colab Demo](https://colab.research.google.com/github/harveenchadha/bol/blob/main/demos/hf/hindi/hf_hindi_him_4200_demo.ipynb)
|
46 |
+
|
47 |
+
## Usage
|
48 |
+
|
49 |
+
The model can be used directly (without a language model) as follows:
|
50 |
+
|
51 |
+
```python
|
52 |
+
import soundfile as sf
|
53 |
+
import torch
|
54 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
55 |
+
import argparse
|
56 |
+
|
57 |
+
def parse_transcription(wav_file):
|
58 |
+
# load pretrained model
|
59 |
+
processor = Wav2Vec2Processor.from_pretrained("Harveenchadha/vakyansh-wav2vec2-hindi-him-4200")
|
60 |
+
model = Wav2Vec2ForCTC.from_pretrained("Harveenchadha/vakyansh-wav2vec2-hindi-him-4200")
|
61 |
+
|
62 |
+
# load audio
|
63 |
+
audio_input, sample_rate = sf.read(wav_file)
|
64 |
+
|
65 |
+
# pad input values and return pt tensor
|
66 |
+
input_values = processor(audio_input, sampling_rate=sample_rate, return_tensors="pt").input_values
|
67 |
+
|
68 |
+
# INFERENCE
|
69 |
+
# retrieve logits & take argmax
|
70 |
+
logits = model(input_values).logits
|
71 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
72 |
+
|
73 |
+
# transcribe
|
74 |
+
transcription = processor.decode(predicted_ids[0], skip_special_tokens=True)
|
75 |
+
print(transcription)
|
76 |
+
|
77 |
+
```
|
78 |
+
|
79 |
+
|
80 |
+
## Evaluation
|
81 |
+
The model can be evaluated as follows on the hindi test data of Common Voice.
|
82 |
+
|
83 |
+
```python
|
84 |
+
|
85 |
+
import torch
|
86 |
+
import torchaudio
|
87 |
+
from datasets import load_dataset, load_metric
|
88 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
89 |
+
import re
|
90 |
+
|
91 |
+
test_dataset = load_dataset("common_voice", "ta", split="test")
|
92 |
+
wer = load_metric("wer")
|
93 |
+
|
94 |
+
processor = Wav2Vec2Processor.from_pretrained("Harveenchadha/vakyansh-wav2vec2-tamil-tam-250")
|
95 |
+
model = Wav2Vec2ForCTC.from_pretrained("Harveenchadha/vakyansh-wav2vec2-tamil-tam-250")
|
96 |
+
model.to("cuda")
|
97 |
+
|
98 |
+
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
99 |
+
|
100 |
+
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]'
|
101 |
+
|
102 |
+
# Preprocessing the datasets.
|
103 |
+
# We need to read the aduio files as arrays
|
104 |
+
def speech_file_to_array_fn(batch):
|
105 |
+
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
|
106 |
+
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
107 |
+
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
108 |
+
return batch
|
109 |
+
|
110 |
+
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
111 |
+
|
112 |
+
# Preprocessing the datasets.
|
113 |
+
# We need to read the aduio files as arrays
|
114 |
+
def evaluate(batch):
|
115 |
+
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
116 |
+
|
117 |
+
with torch.no_grad():
|
118 |
+
logits = model(inputs.input_values.to("cuda")).logits
|
119 |
+
|
120 |
+
pred_ids = torch.argmax(logits, dim=-1)
|
121 |
+
batch["pred_strings"] = processor.batch_decode(pred_ids, skip_special_tokens=True)
|
122 |
+
return batch
|
123 |
+
|
124 |
+
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
125 |
+
|
126 |
+
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
|
127 |
+
|
128 |
+
```
|
129 |
+
|
130 |
+
**Test Result**: 53.64 %
|
131 |
+
|
132 |
+
[**Colab Evaluation**](https://colab.research.google.com/github/harveenchadha/bol/blob/main/demos/hf/hindi/hf_vakyansh_hindi_him_4200_evaluation_common_voice.ipynb)
|
133 |
+
|
134 |
+
## Credits
|
135 |
+
Thanks to Ekstep Foundation for making this possible. The vakyansh team will be open sourcing speech models in all the Indic Languages.
|