File size: 10,323 Bytes
287cc12
7ad81c4
 
 
 
 
 
 
 
 
287cc12
 
7ad81c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
---
license: other
base_model: nvidia/mit-b5
tags:
- vision
- image-segmentation
- generated_from_trainer
model-index:
- name: SegFormer_Clean_Set1_95images_mit-b5_RGB
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# SegFormer_Clean_Set1_95images_mit-b5_RGB

This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the Hasano20/Clean_Set1_95images dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0210
- Mean Iou: 0.9721
- Mean Accuracy: 0.9816
- Overall Accuracy: 0.9941
- Accuracy Background: 0.9974
- Accuracy Melt: 0.9506
- Accuracy Substrate: 0.9969
- Iou Background: 0.9954
- Iou Melt: 0.9316
- Iou Substrate: 0.9891

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Melt | Accuracy Substrate | Iou Background | Iou Melt | Iou Substrate |
|:-------------:|:-------:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:-------------:|:------------------:|:--------------:|:--------:|:-------------:|
| 0.2459        | 1.1765  | 20   | 0.4048          | 0.5613   | 0.6310        | 0.8812           | 0.9733              | 0.0102        | 0.9096             | 0.8391         | 0.0100   | 0.8349        |
| 0.2421        | 2.3529  | 40   | 0.1840          | 0.6645   | 0.7118        | 0.9292           | 0.9969              | 0.1720        | 0.9666             | 0.9574         | 0.1475   | 0.8886        |
| 0.1511        | 3.5294  | 60   | 0.1347          | 0.6751   | 0.7154        | 0.9392           | 0.9909              | 0.1590        | 0.9963             | 0.9639         | 0.1570   | 0.9045        |
| 0.1449        | 4.7059  | 80   | 0.1350          | 0.7359   | 0.7793        | 0.9471           | 0.9937              | 0.3623        | 0.9819             | 0.9642         | 0.3221   | 0.9213        |
| 0.1276        | 5.8824  | 100  | 0.1006          | 0.8194   | 0.9138        | 0.9551           | 0.9823              | 0.8117        | 0.9474             | 0.9707         | 0.5605   | 0.9271        |
| 0.0638        | 7.0588  | 120  | 0.0916          | 0.8139   | 0.8438        | 0.9646           | 0.9964              | 0.5438        | 0.9913             | 0.9779         | 0.5208   | 0.9431        |
| 0.0535        | 8.2353  | 140  | 0.0695          | 0.8572   | 0.8769        | 0.9735           | 0.9969              | 0.6367        | 0.9971             | 0.9804         | 0.6316   | 0.9597        |
| 0.0346        | 9.4118  | 160  | 0.0435          | 0.9224   | 0.9384        | 0.9848           | 0.9962              | 0.8230        | 0.9959             | 0.9888         | 0.8039   | 0.9745        |
| 0.0393        | 10.5882 | 180  | 0.0376          | 0.9352   | 0.9642        | 0.9867           | 0.9970              | 0.9082        | 0.9873             | 0.9882         | 0.8376   | 0.9798        |
| 0.0294        | 11.7647 | 200  | 0.0448          | 0.9298   | 0.9746        | 0.9851           | 0.9932              | 0.9487        | 0.9818             | 0.9916         | 0.8253   | 0.9725        |
| 0.0387        | 12.9412 | 220  | 0.0409          | 0.9270   | 0.9488        | 0.9855           | 0.9970              | 0.8575        | 0.9918             | 0.9830         | 0.8157   | 0.9823        |
| 0.0435        | 14.1176 | 240  | 0.0353          | 0.9482   | 0.9685        | 0.9886           | 0.9891              | 0.9185        | 0.9980             | 0.9881         | 0.8749   | 0.9816        |
| 0.022         | 15.2941 | 260  | 0.0246          | 0.9587   | 0.9696        | 0.9915           | 0.9970              | 0.9152        | 0.9967             | 0.9931         | 0.8979   | 0.9853        |
| 0.0203        | 16.4706 | 280  | 0.0191          | 0.9698   | 0.9826        | 0.9934           | 0.9953              | 0.9557        | 0.9967             | 0.9935         | 0.9272   | 0.9887        |
| 0.0212        | 17.6471 | 300  | 0.0256          | 0.9604   | 0.9724        | 0.9917           | 0.9953              | 0.9243        | 0.9975             | 0.9933         | 0.9028   | 0.9851        |
| 0.0123        | 18.8235 | 320  | 0.0223          | 0.9638   | 0.9763        | 0.9924           | 0.9954              | 0.9363        | 0.9972             | 0.9938         | 0.9112   | 0.9864        |
| 0.0137        | 20.0    | 340  | 0.0292          | 0.9543   | 0.9720        | 0.9906           | 0.9933              | 0.9256        | 0.9969             | 0.9919         | 0.8867   | 0.9844        |
| 0.0092        | 21.1765 | 360  | 0.0171          | 0.9719   | 0.9797        | 0.9941           | 0.9977              | 0.9439        | 0.9974             | 0.9942         | 0.9312   | 0.9902        |
| 0.0094        | 22.3529 | 380  | 0.0178          | 0.9730   | 0.9829        | 0.9941           | 0.9984              | 0.9550        | 0.9952             | 0.9938         | 0.9352   | 0.9901        |
| 0.016         | 23.5294 | 400  | 0.0163          | 0.9760   | 0.9881        | 0.9946           | 0.9954              | 0.9721        | 0.9969             | 0.9944         | 0.9430   | 0.9907        |
| 0.0083        | 24.7059 | 420  | 0.0151          | 0.9784   | 0.9882        | 0.9952           | 0.9973              | 0.9707        | 0.9965             | 0.9952         | 0.9483   | 0.9916        |
| 0.0094        | 25.8824 | 440  | 0.0259          | 0.9626   | 0.9731        | 0.9925           | 0.9971              | 0.9248        | 0.9972             | 0.9952         | 0.9067   | 0.9858        |
| 0.0144        | 27.0588 | 460  | 0.0171          | 0.9743   | 0.9860        | 0.9945           | 0.9980              | 0.9648        | 0.9951             | 0.9948         | 0.9376   | 0.9905        |
| 0.0075        | 28.2353 | 480  | 0.0168          | 0.9733   | 0.9824        | 0.9943           | 0.9972              | 0.9528        | 0.9972             | 0.9949         | 0.9351   | 0.9900        |
| 0.0076        | 29.4118 | 500  | 0.0171          | 0.9756   | 0.9842        | 0.9947           | 0.9979              | 0.9580        | 0.9966             | 0.9951         | 0.9409   | 0.9907        |
| 0.0075        | 30.5882 | 520  | 0.0170          | 0.9748   | 0.9835        | 0.9946           | 0.9974              | 0.9560        | 0.9971             | 0.9954         | 0.9388   | 0.9901        |
| 0.0084        | 31.7647 | 540  | 0.0154          | 0.9783   | 0.9899        | 0.9952           | 0.9976              | 0.9770        | 0.9953             | 0.9954         | 0.9480   | 0.9914        |
| 0.0055        | 32.9412 | 560  | 0.0156          | 0.9777   | 0.9888        | 0.9951           | 0.9971              | 0.9730        | 0.9962             | 0.9953         | 0.9465   | 0.9913        |
| 0.009         | 34.1176 | 580  | 0.0166          | 0.9752   | 0.9856        | 0.9947           | 0.9972              | 0.9630        | 0.9965             | 0.9953         | 0.9400   | 0.9904        |
| 0.0055        | 35.2941 | 600  | 0.0176          | 0.9745   | 0.9835        | 0.9946           | 0.9972              | 0.9560        | 0.9974             | 0.9954         | 0.9378   | 0.9902        |
| 0.0069        | 36.4706 | 620  | 0.0180          | 0.9748   | 0.9832        | 0.9946           | 0.9974              | 0.9547        | 0.9974             | 0.9955         | 0.9388   | 0.9902        |
| 0.0051        | 37.6471 | 640  | 0.0181          | 0.9752   | 0.9843        | 0.9947           | 0.9975              | 0.9585        | 0.9968             | 0.9955         | 0.9397   | 0.9903        |
| 0.0071        | 38.8235 | 660  | 0.0201          | 0.9729   | 0.9847        | 0.9943           | 0.9968              | 0.9610        | 0.9963             | 0.9953         | 0.9337   | 0.9896        |
| 0.0058        | 40.0    | 680  | 0.0208          | 0.9720   | 0.9826        | 0.9941           | 0.9971              | 0.9540        | 0.9968             | 0.9954         | 0.9315   | 0.9892        |
| 0.0061        | 41.1765 | 700  | 0.0222          | 0.9699   | 0.9802        | 0.9937           | 0.9973              | 0.9467        | 0.9967             | 0.9954         | 0.9260   | 0.9883        |
| 0.0062        | 42.3529 | 720  | 0.0205          | 0.9720   | 0.9819        | 0.9941           | 0.9975              | 0.9516        | 0.9966             | 0.9953         | 0.9315   | 0.9891        |
| 0.004         | 43.5294 | 740  | 0.0193          | 0.9741   | 0.9835        | 0.9945           | 0.9973              | 0.9561        | 0.9969             | 0.9954         | 0.9371   | 0.9898        |
| 0.0065        | 44.7059 | 760  | 0.0195          | 0.9738   | 0.9842        | 0.9944           | 0.9971              | 0.9588        | 0.9967             | 0.9953         | 0.9363   | 0.9898        |
| 0.0044        | 45.8824 | 780  | 0.0201          | 0.9731   | 0.9830        | 0.9943           | 0.9971              | 0.9550        | 0.9969             | 0.9954         | 0.9344   | 0.9895        |
| 0.0073        | 47.0588 | 800  | 0.0210          | 0.9723   | 0.9818        | 0.9941           | 0.9972              | 0.9512        | 0.9971             | 0.9954         | 0.9323   | 0.9891        |
| 0.0049        | 48.2353 | 820  | 0.0209          | 0.9723   | 0.9822        | 0.9941           | 0.9974              | 0.9527        | 0.9966             | 0.9954         | 0.9322   | 0.9892        |
| 0.0069        | 49.4118 | 840  | 0.0210          | 0.9721   | 0.9816        | 0.9941           | 0.9974              | 0.9506        | 0.9969             | 0.9954         | 0.9316   | 0.9891        |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.0.1+cu117
- Datasets 2.19.2
- Tokenizers 0.19.1