End of training
Browse files- README.md +96 -196
- config.json +80 -0
- model.safetensors +3 -0
- training_args.bin +3 -0
README.md
CHANGED
@@ -1,199 +1,99 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
-
|
21 |
-
-
|
22 |
-
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
##
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
+
license: other
|
3 |
+
base_model: nvidia/mit-b5
|
4 |
+
tags:
|
5 |
+
- vision
|
6 |
+
- image-segmentation
|
7 |
+
- generated_from_trainer
|
8 |
+
model-index:
|
9 |
+
- name: SegFormer_mit-b5_Clean-Set3-Grayscale_Augmented_Medium
|
10 |
+
results: []
|
11 |
---
|
12 |
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# SegFormer_mit-b5_Clean-Set3-Grayscale_Augmented_Medium
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the Hasano20/Clean-Set3-Grayscale dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.0134
|
21 |
+
- Mean Iou: 0.9793
|
22 |
+
- Mean Accuracy: 0.9903
|
23 |
+
- Overall Accuracy: 0.9947
|
24 |
+
- Accuracy Background: 0.9971
|
25 |
+
- Accuracy Melt: 0.9785
|
26 |
+
- Accuracy Substrate: 0.9952
|
27 |
+
- Iou Background: 0.9935
|
28 |
+
- Iou Melt: 0.9524
|
29 |
+
- Iou Substrate: 0.9920
|
30 |
+
|
31 |
+
## Model description
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Intended uses & limitations
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training and evaluation data
|
40 |
+
|
41 |
+
More information needed
|
42 |
+
|
43 |
+
## Training procedure
|
44 |
+
|
45 |
+
### Training hyperparameters
|
46 |
+
|
47 |
+
The following hyperparameters were used during training:
|
48 |
+
- learning_rate: 0.0002
|
49 |
+
- train_batch_size: 8
|
50 |
+
- eval_batch_size: 8
|
51 |
+
- seed: 42
|
52 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
53 |
+
- lr_scheduler_type: cosine
|
54 |
+
- lr_scheduler_warmup_steps: 100
|
55 |
+
- num_epochs: 25
|
56 |
+
|
57 |
+
### Training results
|
58 |
+
|
59 |
+
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Melt | Accuracy Substrate | Iou Background | Iou Melt | Iou Substrate |
|
60 |
+
|:-------------:|:-------:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:-------------:|:------------------:|:--------------:|:--------:|:-------------:|
|
61 |
+
| 0.1305 | 0.3968 | 50 | 0.1020 | 0.8694 | 0.9199 | 0.9644 | 0.9855 | 0.8016 | 0.9726 | 0.9651 | 0.6989 | 0.9443 |
|
62 |
+
| 0.0906 | 0.7937 | 100 | 0.0668 | 0.8972 | 0.9187 | 0.9757 | 0.9891 | 0.7703 | 0.9968 | 0.9818 | 0.7488 | 0.9609 |
|
63 |
+
| 0.0409 | 1.1905 | 150 | 0.0606 | 0.9231 | 0.9414 | 0.9814 | 0.9879 | 0.8379 | 0.9984 | 0.9840 | 0.8152 | 0.9702 |
|
64 |
+
| 0.0678 | 1.5873 | 200 | 0.0344 | 0.9524 | 0.9762 | 0.9879 | 0.9883 | 0.9463 | 0.9941 | 0.9848 | 0.8890 | 0.9834 |
|
65 |
+
| 0.0312 | 1.9841 | 250 | 0.0340 | 0.9489 | 0.9756 | 0.9874 | 0.9935 | 0.9442 | 0.9892 | 0.9869 | 0.8779 | 0.9818 |
|
66 |
+
| 0.0334 | 2.3810 | 300 | 0.0277 | 0.9576 | 0.9826 | 0.9895 | 0.9956 | 0.9637 | 0.9885 | 0.9908 | 0.8987 | 0.9833 |
|
67 |
+
| 0.0286 | 2.7778 | 350 | 0.0264 | 0.9581 | 0.9776 | 0.9898 | 0.9964 | 0.9452 | 0.9912 | 0.9896 | 0.9002 | 0.9846 |
|
68 |
+
| 0.0214 | 3.1746 | 400 | 0.0230 | 0.9661 | 0.9824 | 0.9915 | 0.9926 | 0.9587 | 0.9958 | 0.9903 | 0.9206 | 0.9875 |
|
69 |
+
| 0.0208 | 3.5714 | 450 | 0.0203 | 0.9692 | 0.9876 | 0.9922 | 0.9968 | 0.9751 | 0.9910 | 0.9916 | 0.9283 | 0.9878 |
|
70 |
+
| 0.0146 | 3.9683 | 500 | 0.0231 | 0.9667 | 0.9852 | 0.9915 | 0.9961 | 0.9680 | 0.9913 | 0.9904 | 0.9229 | 0.9870 |
|
71 |
+
| 0.0197 | 4.3651 | 550 | 0.0208 | 0.9662 | 0.9883 | 0.9916 | 0.9950 | 0.9790 | 0.9908 | 0.9914 | 0.9200 | 0.9873 |
|
72 |
+
| 0.0198 | 4.7619 | 600 | 0.0184 | 0.9722 | 0.9836 | 0.9930 | 0.9969 | 0.9587 | 0.9951 | 0.9916 | 0.9355 | 0.9896 |
|
73 |
+
| 0.019 | 5.1587 | 650 | 0.0211 | 0.9693 | 0.9889 | 0.9919 | 0.9970 | 0.9801 | 0.9896 | 0.9907 | 0.9298 | 0.9872 |
|
74 |
+
| 0.0115 | 5.5556 | 700 | 0.0193 | 0.9706 | 0.9833 | 0.9928 | 0.9963 | 0.9584 | 0.9953 | 0.9926 | 0.9304 | 0.9888 |
|
75 |
+
| 0.0135 | 5.9524 | 750 | 0.0166 | 0.9740 | 0.9867 | 0.9933 | 0.9965 | 0.9692 | 0.9945 | 0.9919 | 0.9401 | 0.9899 |
|
76 |
+
| 0.0127 | 6.3492 | 800 | 0.0182 | 0.9736 | 0.9866 | 0.9932 | 0.9969 | 0.9689 | 0.9939 | 0.9918 | 0.9395 | 0.9895 |
|
77 |
+
| 0.0129 | 6.7460 | 850 | 0.0194 | 0.9723 | 0.9853 | 0.9930 | 0.9958 | 0.9651 | 0.9951 | 0.9920 | 0.9354 | 0.9894 |
|
78 |
+
| 0.0124 | 7.1429 | 900 | 0.0145 | 0.9771 | 0.9900 | 0.9941 | 0.9972 | 0.9789 | 0.9940 | 0.9928 | 0.9472 | 0.9911 |
|
79 |
+
| 0.011 | 7.5397 | 950 | 0.0149 | 0.9774 | 0.9876 | 0.9941 | 0.9972 | 0.9704 | 0.9953 | 0.9923 | 0.9485 | 0.9914 |
|
80 |
+
| 0.0176 | 7.9365 | 1000 | 0.0212 | 0.9681 | 0.9890 | 0.9919 | 0.9972 | 0.9802 | 0.9895 | 0.9923 | 0.9251 | 0.9869 |
|
81 |
+
| 0.0205 | 8.3333 | 1050 | 0.0171 | 0.9724 | 0.9895 | 0.9930 | 0.9971 | 0.9797 | 0.9918 | 0.9924 | 0.9356 | 0.9893 |
|
82 |
+
| 0.0103 | 8.7302 | 1100 | 0.0141 | 0.9780 | 0.9891 | 0.9943 | 0.9968 | 0.9754 | 0.9953 | 0.9928 | 0.9497 | 0.9915 |
|
83 |
+
| 0.0093 | 9.1270 | 1150 | 0.0148 | 0.9769 | 0.9881 | 0.9941 | 0.9965 | 0.9723 | 0.9956 | 0.9930 | 0.9466 | 0.9911 |
|
84 |
+
| 0.0113 | 9.5238 | 1200 | 0.0136 | 0.9788 | 0.9881 | 0.9945 | 0.9977 | 0.9711 | 0.9955 | 0.9929 | 0.9517 | 0.9918 |
|
85 |
+
| 0.0132 | 9.9206 | 1250 | 0.0144 | 0.9783 | 0.9882 | 0.9944 | 0.9971 | 0.9720 | 0.9957 | 0.9930 | 0.9503 | 0.9915 |
|
86 |
+
| 0.0104 | 10.3175 | 1300 | 0.0135 | 0.9788 | 0.9882 | 0.9945 | 0.9976 | 0.9714 | 0.9957 | 0.9932 | 0.9515 | 0.9918 |
|
87 |
+
| 0.0153 | 10.7143 | 1350 | 0.0129 | 0.9796 | 0.9889 | 0.9947 | 0.9970 | 0.9734 | 0.9962 | 0.9932 | 0.9534 | 0.9922 |
|
88 |
+
| 0.0091 | 11.1111 | 1400 | 0.0142 | 0.9783 | 0.9900 | 0.9944 | 0.9968 | 0.9784 | 0.9950 | 0.9931 | 0.9500 | 0.9917 |
|
89 |
+
| 0.0098 | 11.5079 | 1450 | 0.0139 | 0.9789 | 0.9889 | 0.9946 | 0.9967 | 0.9740 | 0.9962 | 0.9933 | 0.9516 | 0.9920 |
|
90 |
+
| 0.0094 | 11.9048 | 1500 | 0.0136 | 0.9795 | 0.9887 | 0.9947 | 0.9977 | 0.9730 | 0.9956 | 0.9931 | 0.9533 | 0.9920 |
|
91 |
+
| 0.0088 | 12.3016 | 1550 | 0.0134 | 0.9793 | 0.9903 | 0.9947 | 0.9971 | 0.9785 | 0.9952 | 0.9935 | 0.9524 | 0.9920 |
|
92 |
+
|
93 |
+
|
94 |
+
### Framework versions
|
95 |
+
|
96 |
+
- Transformers 4.41.2
|
97 |
+
- Pytorch 2.0.1+cu117
|
98 |
+
- Datasets 2.19.2
|
99 |
+
- Tokenizers 0.19.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
config.json
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "nvidia/mit-b5",
|
3 |
+
"architectures": [
|
4 |
+
"SegformerForSemanticSegmentation"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.0,
|
7 |
+
"classifier_dropout_prob": 0.1,
|
8 |
+
"decoder_hidden_size": 768,
|
9 |
+
"depths": [
|
10 |
+
3,
|
11 |
+
6,
|
12 |
+
40,
|
13 |
+
3
|
14 |
+
],
|
15 |
+
"downsampling_rates": [
|
16 |
+
1,
|
17 |
+
4,
|
18 |
+
8,
|
19 |
+
16
|
20 |
+
],
|
21 |
+
"drop_path_rate": 0.1,
|
22 |
+
"hidden_act": "gelu",
|
23 |
+
"hidden_dropout_prob": 0.0,
|
24 |
+
"hidden_sizes": [
|
25 |
+
64,
|
26 |
+
128,
|
27 |
+
320,
|
28 |
+
512
|
29 |
+
],
|
30 |
+
"id2label": {
|
31 |
+
"0": "background",
|
32 |
+
"1": "melt",
|
33 |
+
"2": "substrate"
|
34 |
+
},
|
35 |
+
"image_size": 224,
|
36 |
+
"initializer_range": 0.02,
|
37 |
+
"label2id": {
|
38 |
+
"background": 0,
|
39 |
+
"melt": 1,
|
40 |
+
"substrate": 2
|
41 |
+
},
|
42 |
+
"layer_norm_eps": 1e-06,
|
43 |
+
"mlp_ratios": [
|
44 |
+
4,
|
45 |
+
4,
|
46 |
+
4,
|
47 |
+
4
|
48 |
+
],
|
49 |
+
"model_type": "segformer",
|
50 |
+
"num_attention_heads": [
|
51 |
+
1,
|
52 |
+
2,
|
53 |
+
5,
|
54 |
+
8
|
55 |
+
],
|
56 |
+
"num_channels": 3,
|
57 |
+
"num_encoder_blocks": 4,
|
58 |
+
"patch_sizes": [
|
59 |
+
7,
|
60 |
+
3,
|
61 |
+
3,
|
62 |
+
3
|
63 |
+
],
|
64 |
+
"reshape_last_stage": true,
|
65 |
+
"semantic_loss_ignore_index": 255,
|
66 |
+
"sr_ratios": [
|
67 |
+
8,
|
68 |
+
4,
|
69 |
+
2,
|
70 |
+
1
|
71 |
+
],
|
72 |
+
"strides": [
|
73 |
+
4,
|
74 |
+
2,
|
75 |
+
2,
|
76 |
+
2
|
77 |
+
],
|
78 |
+
"torch_dtype": "float32",
|
79 |
+
"transformers_version": "4.41.2"
|
80 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3ae5d2b02a2ecdeac34da9a7ad69da53e604c461b0485980e005794b4b2adc96
|
3 |
+
size 338531516
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:183f516ef24882b52f12e19040d77281a9d1e4b8295a9281293171087adc2ad7
|
3 |
+
size 4987
|