File size: 10,309 Bytes
c3cafd0
8475ec3
 
 
 
 
 
 
 
 
c3cafd0
 
8475ec3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
---
license: other
base_model: nvidia/mit-b5
tags:
- vision
- image-segmentation
- generated_from_trainer
model-index:
- name: segformer_Clean_Set1_95images_mit-b5
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# segformer_Clean_Set1_95images_mit-b5

This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the Hasano20/Clean_Set1_95images dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0169
- Mean Iou: 0.6481
- Mean Accuracy: 0.9819
- Overall Accuracy: 0.9935
- Accuracy Background: nan
- Accuracy Melt: 0.9668
- Accuracy Substrate: 0.9970
- Iou Background: 0.0
- Iou Melt: 0.9507
- Iou Substrate: 0.9937

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Melt | Accuracy Substrate | Iou Background | Iou Melt | Iou Substrate |
|:-------------:|:-------:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:-------------:|:------------------:|:--------------:|:--------:|:-------------:|
| 0.2276        | 1.1765  | 20   | 0.2657          | 0.3456   | 0.5675        | 0.8925           | nan                 | 0.1416        | 0.9935             | 0.0            | 0.1374   | 0.8994        |
| 0.3964        | 2.3529  | 40   | 0.1808          | 0.3540   | 0.5688        | 0.8852           | nan                 | 0.1542        | 0.9835             | 0.0            | 0.1476   | 0.9145        |
| 0.2669        | 3.5294  | 60   | 0.1312          | 0.3929   | 0.6246        | 0.9080           | nan                 | 0.2530        | 0.9961             | 0.0            | 0.2488   | 0.9298        |
| 0.0785        | 4.7059  | 80   | 0.1141          | 0.4822   | 0.7742        | 0.9255           | nan                 | 0.5758        | 0.9725             | 0.0            | 0.4933   | 0.9533        |
| 0.1552        | 5.8824  | 100  | 0.0904          | 0.5549   | 0.9259        | 0.9567           | nan                 | 0.8857        | 0.9662             | 0.0            | 0.7116   | 0.9532        |
| 0.1163        | 7.0588  | 120  | 0.0988          | 0.5169   | 0.8101        | 0.9463           | nan                 | 0.6316        | 0.9886             | 0.0            | 0.6060   | 0.9446        |
| 0.0738        | 8.2353  | 140  | 0.2555          | 0.3735   | 0.6075        | 0.9064           | nan                 | 0.2156        | 0.9993             | 0.0            | 0.2152   | 0.9053        |
| 0.07          | 9.4118  | 160  | 0.0706          | 0.5411   | 0.8335        | 0.9589           | nan                 | 0.6691        | 0.9979             | 0.0            | 0.6629   | 0.9605        |
| 0.0432        | 10.5882 | 180  | 0.0542          | 0.5821   | 0.8942        | 0.9708           | nan                 | 0.7937        | 0.9946             | 0.0            | 0.7743   | 0.9720        |
| 0.0833        | 11.7647 | 200  | 0.0554          | 0.5863   | 0.8937        | 0.9736           | nan                 | 0.7890        | 0.9984             | 0.0            | 0.7823   | 0.9765        |
| 0.0488        | 12.9412 | 220  | 0.0325          | 0.6218   | 0.9654        | 0.9824           | nan                 | 0.9431        | 0.9877             | 0.0            | 0.8817   | 0.9836        |
| 0.0401        | 14.1176 | 240  | 0.0409          | 0.6276   | 0.9531        | 0.9874           | nan                 | 0.9081        | 0.9981             | 0.0            | 0.8966   | 0.9863        |
| 0.0192        | 15.2941 | 260  | 0.0219          | 0.6383   | 0.9686        | 0.9902           | nan                 | 0.9402        | 0.9969             | 0.0            | 0.9242   | 0.9908        |
| 0.0639        | 16.4706 | 280  | 0.0500          | 0.5965   | 0.9125        | 0.9749           | nan                 | 0.8306        | 0.9943             | 0.0            | 0.8014   | 0.9882        |
| 0.0237        | 17.6471 | 300  | 0.0246          | 0.6300   | 0.9558        | 0.9864           | nan                 | 0.9156        | 0.9959             | 0.0            | 0.9005   | 0.9894        |
| 0.014         | 18.8235 | 320  | 0.0207          | 0.6441   | 0.9757        | 0.9921           | nan                 | 0.9543        | 0.9971             | 0.0            | 0.9404   | 0.9920        |
| 0.0362        | 20.0    | 340  | 0.0226          | 0.6348   | 0.9639        | 0.9888           | nan                 | 0.9312        | 0.9966             | 0.0            | 0.9157   | 0.9889        |
| 0.0195        | 21.1765 | 360  | 0.0203          | 0.6437   | 0.9754        | 0.9923           | nan                 | 0.9532        | 0.9976             | 0.0            | 0.9392   | 0.9919        |
| 0.0123        | 22.3529 | 380  | 0.0176          | 0.6415   | 0.9745        | 0.9910           | nan                 | 0.9529        | 0.9962             | 0.0            | 0.9317   | 0.9929        |
| 0.0103        | 23.5294 | 400  | 0.0212          | 0.6427   | 0.9781        | 0.9918           | nan                 | 0.9600        | 0.9961             | 0.0            | 0.9364   | 0.9916        |
| 0.0098        | 24.7059 | 420  | 0.0157          | 0.6467   | 0.9831        | 0.9929           | nan                 | 0.9702        | 0.9960             | 0.0            | 0.9465   | 0.9935        |
| 0.0074        | 25.8824 | 440  | 0.0168          | 0.6438   | 0.9730        | 0.9920           | nan                 | 0.9482        | 0.9979             | 0.0            | 0.9384   | 0.9930        |
| 0.0078        | 27.0588 | 460  | 0.0179          | 0.6441   | 0.9752        | 0.9922           | nan                 | 0.9530        | 0.9974             | 0.0            | 0.9396   | 0.9926        |
| 0.0084        | 28.2353 | 480  | 0.0188          | 0.6416   | 0.9808        | 0.9909           | nan                 | 0.9675        | 0.9941             | 0.0            | 0.9333   | 0.9916        |
| 0.0096        | 29.4118 | 500  | 0.0187          | 0.6449   | 0.9866        | 0.9924           | nan                 | 0.9790        | 0.9942             | 0.0            | 0.9422   | 0.9923        |
| 0.0059        | 30.5882 | 520  | 0.0209          | 0.6415   | 0.9718        | 0.9914           | nan                 | 0.9460        | 0.9975             | 0.0            | 0.9331   | 0.9915        |
| 0.0092        | 31.7647 | 540  | 0.0227          | 0.6383   | 0.9652        | 0.9903           | nan                 | 0.9323        | 0.9981             | 0.0            | 0.9239   | 0.9910        |
| 0.0107        | 32.9412 | 560  | 0.0177          | 0.6438   | 0.9747        | 0.9920           | nan                 | 0.9521        | 0.9973             | 0.0            | 0.9382   | 0.9931        |
| 0.0092        | 34.1176 | 580  | 0.0167          | 0.6463   | 0.9771        | 0.9929           | nan                 | 0.9563        | 0.9979             | 0.0            | 0.9455   | 0.9934        |
| 0.0076        | 35.2941 | 600  | 0.0160          | 0.6472   | 0.9791        | 0.9931           | nan                 | 0.9609        | 0.9974             | 0.0            | 0.9479   | 0.9937        |
| 0.0062        | 36.4706 | 620  | 0.0193          | 0.6423   | 0.9715        | 0.9917           | nan                 | 0.9450        | 0.9979             | 0.0            | 0.9350   | 0.9919        |
| 0.0063        | 37.6471 | 640  | 0.0160          | 0.6481   | 0.9824        | 0.9933           | nan                 | 0.9680        | 0.9967             | 0.0            | 0.9503   | 0.9939        |
| 0.0064        | 38.8235 | 660  | 0.0164          | 0.6489   | 0.9846        | 0.9935           | nan                 | 0.9730        | 0.9963             | 0.0            | 0.9530   | 0.9936        |
| 0.009         | 40.0    | 680  | 0.0167          | 0.6487   | 0.9829        | 0.9937           | nan                 | 0.9687        | 0.9971             | 0.0            | 0.9521   | 0.9938        |
| 0.0062        | 41.1765 | 700  | 0.0169          | 0.6478   | 0.9801        | 0.9934           | nan                 | 0.9626        | 0.9975             | 0.0            | 0.9497   | 0.9936        |
| 0.0047        | 42.3529 | 720  | 0.0170          | 0.6481   | 0.9814        | 0.9934           | nan                 | 0.9657        | 0.9972             | 0.0            | 0.9507   | 0.9935        |
| 0.0053        | 43.5294 | 740  | 0.0166          | 0.6490   | 0.9832        | 0.9939           | nan                 | 0.9693        | 0.9972             | 0.0            | 0.9529   | 0.9941        |
| 0.0076        | 44.7059 | 760  | 0.0165          | 0.6484   | 0.9828        | 0.9934           | nan                 | 0.9688        | 0.9968             | 0.0            | 0.9513   | 0.9938        |
| 0.0066        | 45.8824 | 780  | 0.0166          | 0.6488   | 0.9835        | 0.9937           | nan                 | 0.9702        | 0.9969             | 0.0            | 0.9523   | 0.9940        |
| 0.0048        | 47.0588 | 800  | 0.0169          | 0.6482   | 0.9824        | 0.9935           | nan                 | 0.9678        | 0.9969             | 0.0            | 0.9508   | 0.9937        |
| 0.0061        | 48.2353 | 820  | 0.0170          | 0.6481   | 0.9821        | 0.9934           | nan                 | 0.9674        | 0.9969             | 0.0            | 0.9506   | 0.9937        |
| 0.0087        | 49.4118 | 840  | 0.0169          | 0.6481   | 0.9819        | 0.9935           | nan                 | 0.9668        | 0.9970             | 0.0            | 0.9507   | 0.9937        |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.0.1+cu117
- Datasets 2.19.2
- Tokenizers 0.19.1