File size: 8,699 Bytes
c3cafd0
8475ec3
debd4f5
8475ec3
 
 
 
 
debd4f5
8475ec3
c3cafd0
 
8475ec3
 
 
debd4f5
8475ec3
 
 
debd4f5
 
 
 
 
 
 
 
 
 
8475ec3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
debd4f5
8475ec3
 
 
 
 
debd4f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8475ec3
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
---
license: other
base_model: nvidia/mit-b5
tags:
- vision
- image-segmentation
- generated_from_trainer
model-index:
- name: SegFormer_Clean_Set1_95images_mit-b5
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# SegFormer_Clean_Set1_95images_mit-b5

This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the Hasano20/Clean_Set1_95images dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0390
- Mean Iou: 0.9468
- Mean Accuracy: 0.9733
- Overall Accuracy: 0.9860
- Accuracy Background: 0.9960
- Accuracy Melt: 0.9390
- Accuracy Substrate: 0.9850
- Iou Background: 0.9899
- Iou Melt: 0.8763
- Iou Substrate: 0.9743

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Melt | Accuracy Substrate | Iou Background | Iou Melt | Iou Substrate |
|:-------------:|:-------:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:-------------:|:------------------:|:--------------:|:--------:|:-------------:|
| 0.3883        | 0.5882  | 10   | 0.7088          | 0.5294   | 0.6161        | 0.8428           | 0.8644              | 0.0           | 0.9840             | 0.8428         | 0.0      | 0.7456        |
| 0.6271        | 1.1765  | 20   | 0.4185          | 0.5763   | 0.6455        | 0.8828           | 0.9472              | 0.0011        | 0.9882             | 0.9297         | 0.0011   | 0.7980        |
| 0.1779        | 1.7647  | 30   | 0.2746          | 0.6105   | 0.6712        | 0.9000           | 0.9943              | 0.0499        | 0.9694             | 0.9534         | 0.0474   | 0.8307        |
| 0.228         | 2.3529  | 40   | 0.2865          | 0.6102   | 0.6723        | 0.8897           | 0.9635              | 0.0820        | 0.9716             | 0.9359         | 0.0692   | 0.8254        |
| 0.1099        | 2.9412  | 50   | 0.2432          | 0.6646   | 0.7305        | 0.9018           | 0.9879              | 0.2657        | 0.9380             | 0.9495         | 0.2073   | 0.8369        |
| 0.1448        | 3.5294  | 60   | 0.3321          | 0.5993   | 0.6606        | 0.8987           | 0.9744              | 0.0140        | 0.9934             | 0.9613         | 0.0139   | 0.8226        |
| 0.2412        | 4.1176  | 70   | 0.2053          | 0.6581   | 0.7115        | 0.9150           | 0.9906              | 0.1590        | 0.9850             | 0.9734         | 0.1485   | 0.8525        |
| 0.1585        | 4.7059  | 80   | 0.2824          | 0.7094   | 0.8614        | 0.8838           | 0.9775              | 0.8013        | 0.8055             | 0.9504         | 0.3927   | 0.7851        |
| 0.2025        | 5.2941  | 90   | 0.2405          | 0.7011   | 0.8139        | 0.8924           | 0.9982              | 0.6013        | 0.8423             | 0.9387         | 0.3501   | 0.8144        |
| 0.2516        | 5.8824  | 100  | 0.2134          | 0.7488   | 0.8852        | 0.9083           | 0.9937              | 0.8227        | 0.8391             | 0.9721         | 0.4533   | 0.8212        |
| 0.275         | 6.4706  | 110  | 0.2856          | 0.7243   | 0.8793        | 0.8910           | 0.9965              | 0.8484        | 0.7932             | 0.9543         | 0.4339   | 0.7848        |
| 0.0721        | 7.0588  | 120  | 0.1417          | 0.7758   | 0.8225        | 0.9428           | 0.9913              | 0.4956        | 0.9804             | 0.9789         | 0.4530   | 0.8955        |
| 0.1478        | 7.6471  | 130  | 0.1383          | 0.7811   | 0.8383        | 0.9412           | 0.9828              | 0.5588        | 0.9733             | 0.9715         | 0.4727   | 0.8992        |
| 0.0541        | 8.2353  | 140  | 0.1654          | 0.7353   | 0.7778        | 0.9368           | 0.9958              | 0.3461        | 0.9915             | 0.9805         | 0.3400   | 0.8854        |
| 0.1068        | 8.8235  | 150  | 0.1001          | 0.8481   | 0.8900        | 0.9607           | 0.9977              | 0.6982        | 0.9742             | 0.9813         | 0.6358   | 0.9272        |
| 0.0879        | 9.4118  | 160  | 0.1177          | 0.8272   | 0.8658        | 0.9568           | 0.9914              | 0.6186        | 0.9875             | 0.9798         | 0.5785   | 0.9232        |
| 0.0855        | 10.0    | 170  | 0.0929          | 0.8763   | 0.9444        | 0.9650           | 0.9910              | 0.8886        | 0.9537             | 0.9848         | 0.7113   | 0.9327        |
| 0.102         | 10.5882 | 180  | 0.0770          | 0.8935   | 0.9405        | 0.9715           | 0.9962              | 0.8565        | 0.9689             | 0.9851         | 0.7486   | 0.9468        |
| 0.1044        | 11.1765 | 190  | 0.1401          | 0.7868   | 0.8367        | 0.9441           | 0.9696              | 0.5446        | 0.9957             | 0.9672         | 0.4853   | 0.9080        |
| 0.0705        | 11.7647 | 200  | 0.0822          | 0.8836   | 0.9507        | 0.9674           | 0.9924              | 0.9057        | 0.9542             | 0.9853         | 0.7276   | 0.9380        |
| 0.0583        | 12.3529 | 210  | 0.0670          | 0.9102   | 0.9489        | 0.9757           | 0.9957              | 0.8760        | 0.9750             | 0.9841         | 0.7914   | 0.9550        |
| 0.0337        | 12.9412 | 220  | 0.0718          | 0.9048   | 0.9384        | 0.9751           | 0.9960              | 0.8389        | 0.9803             | 0.9858         | 0.7756   | 0.9530        |
| 0.0237        | 13.5294 | 230  | 0.0634          | 0.9106   | 0.9419        | 0.9769           | 0.9957              | 0.8467        | 0.9832             | 0.9878         | 0.7879   | 0.9562        |
| 0.2478        | 14.1176 | 240  | 0.0724          | 0.8949   | 0.9289        | 0.9726           | 0.9958              | 0.8103        | 0.9806             | 0.9855         | 0.7514   | 0.9478        |
| 0.0237        | 14.7059 | 250  | 0.0570          | 0.9230   | 0.9610        | 0.9790           | 0.9950              | 0.9124        | 0.9757             | 0.9861         | 0.8226   | 0.9604        |
| 0.0237        | 15.2941 | 260  | 0.0564          | 0.9251   | 0.9650        | 0.9798           | 0.9957              | 0.9248        | 0.9745             | 0.9887         | 0.8253   | 0.9612        |
| 0.0414        | 15.8824 | 270  | 0.0786          | 0.8738   | 0.8997        | 0.9693           | 0.9926              | 0.7107        | 0.9959             | 0.9893         | 0.6917   | 0.9405        |
| 0.0444        | 16.4706 | 280  | 0.0431          | 0.9383   | 0.9686        | 0.9840           | 0.9962              | 0.9269        | 0.9828             | 0.9908         | 0.8539   | 0.9702        |
| 0.0307        | 17.0588 | 290  | 0.0416          | 0.9438   | 0.9719        | 0.9855           | 0.9942              | 0.9350        | 0.9864             | 0.9900         | 0.8675   | 0.9741        |
| 0.0335        | 17.6471 | 300  | 0.0420          | 0.9402   | 0.9635        | 0.9846           | 0.9943              | 0.9062        | 0.9900             | 0.9900         | 0.8589   | 0.9716        |
| 0.0717        | 18.2353 | 310  | 0.0448          | 0.9375   | 0.9651        | 0.9837           | 0.9971              | 0.9144        | 0.9837             | 0.9891         | 0.8533   | 0.9702        |
| 0.0225        | 18.8235 | 320  | 0.0403          | 0.9405   | 0.9635        | 0.9847           | 0.9947              | 0.9058        | 0.9899             | 0.9904         | 0.8595   | 0.9716        |
| 0.0315        | 19.4118 | 330  | 0.0394          | 0.9444   | 0.9686        | 0.9855           | 0.9956              | 0.9230        | 0.9873             | 0.9901         | 0.8698   | 0.9732        |
| 0.0178        | 20.0    | 340  | 0.0390          | 0.9468   | 0.9733        | 0.9860           | 0.9960              | 0.9390        | 0.9850             | 0.9899         | 0.8763   | 0.9743        |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.0.1+cu117
- Datasets 2.19.2
- Tokenizers 0.19.1