File size: 6,319 Bytes
93cb74b
e6733d3
 
 
 
 
 
 
 
 
93cb74b
 
e6733d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
---
license: other
base_model: nvidia/mit-b5
tags:
- vision
- image-segmentation
- generated_from_trainer
model-index:
- name: SegFormer_Mixed_Set2_788images_mit-b5_RGB
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# SegFormer_Mixed_Set2_788images_mit-b5_RGB

This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the Hasano20/Mixed_Set2_788images dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0150
- Mean Iou: 0.9788
- Mean Accuracy: 0.9887
- Overall Accuracy: 0.9948
- Accuracy Background: 0.9958
- Accuracy Melt: 0.9735
- Accuracy Substrate: 0.9969
- Iou Background: 0.9926
- Iou Melt: 0.9509
- Iou Substrate: 0.9927

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 50

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Melt | Accuracy Substrate | Iou Background | Iou Melt | Iou Substrate |
|:-------------:|:-------:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:-------------:|:------------------:|:--------------:|:--------:|:-------------:|
| 0.1619        | 0.7042  | 50   | 0.1799          | 0.7782   | 0.8306        | 0.9444           | 0.9902              | 0.5371        | 0.9645             | 0.9436         | 0.4720   | 0.9192        |
| 0.062         | 1.4085  | 100  | 0.1065          | 0.8361   | 0.8630        | 0.9638           | 0.9833              | 0.6084        | 0.9972             | 0.9720         | 0.5922   | 0.9441        |
| 0.1757        | 2.1127  | 150  | 0.1157          | 0.8551   | 0.8896        | 0.9617           | 0.9803              | 0.7065        | 0.9820             | 0.9484         | 0.6731   | 0.9438        |
| 0.0872        | 2.8169  | 200  | 0.0446          | 0.9302   | 0.9539        | 0.9844           | 0.9938              | 0.8760        | 0.9920             | 0.9846         | 0.8282   | 0.9777        |
| 0.0336        | 3.5211  | 250  | 0.0338          | 0.9469   | 0.9751        | 0.9877           | 0.9913              | 0.9431        | 0.9910             | 0.9857         | 0.8719   | 0.9831        |
| 0.0417        | 4.2254  | 300  | 0.0488          | 0.9281   | 0.9820        | 0.9830           | 0.9941              | 0.9765        | 0.9753             | 0.9877         | 0.8233   | 0.9732        |
| 0.0273        | 4.9296  | 350  | 0.0295          | 0.9516   | 0.9628        | 0.9892           | 0.9952              | 0.8960        | 0.9973             | 0.9895         | 0.8819   | 0.9835        |
| 0.0249        | 5.6338  | 400  | 0.0228          | 0.9627   | 0.9807        | 0.9913           | 0.9916              | 0.9544        | 0.9960             | 0.9890         | 0.9112   | 0.9879        |
| 0.0247        | 6.3380  | 450  | 0.0234          | 0.9642   | 0.9886        | 0.9915           | 0.9919              | 0.9814        | 0.9925             | 0.9894         | 0.9151   | 0.9881        |
| 0.0219        | 7.0423  | 500  | 0.0220          | 0.9656   | 0.9768        | 0.9920           | 0.9943              | 0.9386        | 0.9975             | 0.9908         | 0.9178   | 0.9882        |
| 0.0172        | 7.7465  | 550  | 0.0206          | 0.9672   | 0.9888        | 0.9923           | 0.9951              | 0.9792        | 0.9919             | 0.9913         | 0.9215   | 0.9888        |
| 0.018         | 8.4507  | 600  | 0.0169          | 0.9747   | 0.9859        | 0.9937           | 0.9944              | 0.9665        | 0.9969             | 0.9910         | 0.9420   | 0.9911        |
| 0.0152        | 9.1549  | 650  | 0.0180          | 0.9726   | 0.9856        | 0.9932           | 0.9968              | 0.9659        | 0.9942             | 0.9909         | 0.9366   | 0.9902        |
| 0.016         | 9.8592  | 700  | 0.0180          | 0.9729   | 0.9877        | 0.9936           | 0.9955              | 0.9726        | 0.9949             | 0.9917         | 0.9360   | 0.9909        |
| 0.0132        | 10.5634 | 750  | 0.0169          | 0.9746   | 0.9872        | 0.9938           | 0.9944              | 0.9708        | 0.9965             | 0.9914         | 0.9410   | 0.9913        |
| 0.0115        | 11.2676 | 800  | 0.0156          | 0.9761   | 0.9898        | 0.9941           | 0.9952              | 0.9789        | 0.9954             | 0.9920         | 0.9446   | 0.9917        |
| 0.0143        | 11.9718 | 850  | 0.0155          | 0.9765   | 0.9895        | 0.9943           | 0.9962              | 0.9772        | 0.9952             | 0.9923         | 0.9452   | 0.9920        |
| 0.0106        | 12.6761 | 900  | 0.0146          | 0.9778   | 0.9898        | 0.9946           | 0.9959              | 0.9777        | 0.9959             | 0.9924         | 0.9485   | 0.9925        |
| 0.0106        | 13.3803 | 950  | 0.0146          | 0.9780   | 0.9888        | 0.9947           | 0.9967              | 0.9736        | 0.9959             | 0.9923         | 0.9490   | 0.9928        |
| 0.0068        | 14.0845 | 1000 | 0.0147          | 0.9784   | 0.9883        | 0.9947           | 0.9966              | 0.9718        | 0.9964             | 0.9924         | 0.9501   | 0.9928        |
| 0.0115        | 14.7887 | 1050 | 0.0163          | 0.9759   | 0.9901        | 0.9942           | 0.9958              | 0.9795        | 0.9950             | 0.9925         | 0.9436   | 0.9917        |
| 0.0099        | 15.4930 | 1100 | 0.0150          | 0.9788   | 0.9887        | 0.9948           | 0.9958              | 0.9735        | 0.9969             | 0.9926         | 0.9509   | 0.9927        |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.0.1+cu117
- Datasets 2.19.2
- Tokenizers 0.19.1