Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- 1_Pooling/config.json +10 -0
- README.md +562 -0
- config.json +28 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- sentencepiece.bpe.model +3 -0
- special_tokens_map.json +51 -0
- tokenizer.json +3 -0
- tokenizer_config.json +61 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 1024,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,562 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: intfloat/multilingual-e5-large
|
3 |
+
library_name: sentence-transformers
|
4 |
+
metrics:
|
5 |
+
- negative_mse
|
6 |
+
pipeline_tag: sentence-similarity
|
7 |
+
tags:
|
8 |
+
- sentence-transformers
|
9 |
+
- sentence-similarity
|
10 |
+
- feature-extraction
|
11 |
+
- generated_from_trainer
|
12 |
+
- dataset_size:22076
|
13 |
+
- loss:MSELoss
|
14 |
+
widget:
|
15 |
+
- source_sentence: 'passage: Nagpadala ang Navy ng 16 Warships, Alinsunod sa Pagsusuri
|
16 |
+
ng Presidential Fleet https://bit.ly/3O0qSiV'
|
17 |
+
sentences:
|
18 |
+
- 'passage: Happy Birthday ti nakaskasdaaw unay a nanang iti lubong! #panagkasangay
|
19 |
+
#selebrasion'
|
20 |
+
- 'passage: Isang kagubatan na gumagawa ng mga puno ng oak para sa mga materyales
|
21 |
+
sa pagtatayo'
|
22 |
+
- 'passage: Ang pagkadiskaril sa tren miresulta sa daghang mga samad ug kadaot sa
|
23 |
+
palibot nga mga kabtangan.'
|
24 |
+
- source_sentence: 'passage: Online and Remote Learning Proves to be Effective During
|
25 |
+
Lockdown'
|
26 |
+
sentences:
|
27 |
+
- 'passage: Gisuspinde sa Ecuador ang rasyon sa kuryente sa pagbalik sa ulan https://t.co/RWCqU0noSq'
|
28 |
+
- 'passage: i feel regretful that i didnt bring overnight gear'
|
29 |
+
- "passage: Creative Dad Has A Delicious Way To Teach His Daughter The ABCs \n"
|
30 |
+
- source_sentence: 'passage: Ang pagbibigay ng maling gamot sa isang pasyente na nagreresulta
|
31 |
+
sa mga komplikasyon sa kalusugan'
|
32 |
+
sentences:
|
33 |
+
- 'passage: Rugian ti Iraq dagiti panagregget a mangbangon manen kalpasan ti adu
|
34 |
+
a tawen a gubat'
|
35 |
+
- 'passage: RT @dayurad_: 24 anyos nga Puntland Casino Garowe! @Bulshaawi_ https://t.co/ExWnH7fdW5'
|
36 |
+
- 'passage: PAG-ALAGAD SA PANGKALAHATAG SA GOBYERNO: Libre na ang Flu Shots Anaa
|
37 |
+
na sa Tanang Lokal nga Health Centers'
|
38 |
+
- source_sentence: "passage: Girl Does Ice Bucket Challenge... After Having Wisdom\
|
39 |
+
\ Teeth Pulled \n"
|
40 |
+
sentences:
|
41 |
+
- 'passage: New study shows the impact of immigration on social conditions. #ImmigrationImpact'
|
42 |
+
- 'passage: Nabati nako ang akong kaugalingon nga naigo niining katingad-an nga
|
43 |
+
gabon nga bungbong'
|
44 |
+
- 'passage: Just got my child’s educational grading report and couldn’t be more
|
45 |
+
proud of their progress!'
|
46 |
+
- source_sentence: "passage: Fit Bodies Aren't Perfect, Either \n"
|
47 |
+
sentences:
|
48 |
+
- 'passage: Royals attend extravagant ceremony to celebrate the opening of new museum'
|
49 |
+
- 'passage: Researchers publish study on the social and psychological impact of
|
50 |
+
online dating'
|
51 |
+
- "passage: Native-American Kids Doused With Beer at SD Hockey Game \n"
|
52 |
+
model-index:
|
53 |
+
- name: SentenceTransformer based on intfloat/multilingual-e5-large
|
54 |
+
results:
|
55 |
+
- task:
|
56 |
+
type: knowledge-distillation
|
57 |
+
name: Knowledge Distillation
|
58 |
+
dataset:
|
59 |
+
name: Unknown
|
60 |
+
type: unknown
|
61 |
+
metrics:
|
62 |
+
- type: negative_mse
|
63 |
+
value: -0.0055574404541403055
|
64 |
+
name: Negative Mse
|
65 |
+
---
|
66 |
+
|
67 |
+
# SentenceTransformer based on intfloat/multilingual-e5-large
|
68 |
+
|
69 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
70 |
+
|
71 |
+
## Model Details
|
72 |
+
|
73 |
+
### Model Description
|
74 |
+
- **Model Type:** Sentence Transformer
|
75 |
+
- **Base model:** [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) <!-- at revision ab10c1a7f42e74530fe7ae5be82e6d4f11a719eb -->
|
76 |
+
- **Maximum Sequence Length:** 512 tokens
|
77 |
+
- **Output Dimensionality:** 1024 tokens
|
78 |
+
- **Similarity Function:** Cosine Similarity
|
79 |
+
<!-- - **Training Dataset:** Unknown -->
|
80 |
+
<!-- - **Language:** Unknown -->
|
81 |
+
<!-- - **License:** Unknown -->
|
82 |
+
|
83 |
+
### Model Sources
|
84 |
+
|
85 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
86 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
87 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
88 |
+
|
89 |
+
### Full Model Architecture
|
90 |
+
|
91 |
+
```
|
92 |
+
SentenceTransformer(
|
93 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
|
94 |
+
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
95 |
+
(2): Normalize()
|
96 |
+
)
|
97 |
+
```
|
98 |
+
|
99 |
+
## Usage
|
100 |
+
|
101 |
+
### Direct Usage (Sentence Transformers)
|
102 |
+
|
103 |
+
First install the Sentence Transformers library:
|
104 |
+
|
105 |
+
```bash
|
106 |
+
pip install -U sentence-transformers
|
107 |
+
```
|
108 |
+
|
109 |
+
Then you can load this model and run inference.
|
110 |
+
```python
|
111 |
+
from sentence_transformers import SentenceTransformer
|
112 |
+
|
113 |
+
# Download from the 🤗 Hub
|
114 |
+
model = SentenceTransformer("sentence_transformers_model_id")
|
115 |
+
# Run inference
|
116 |
+
sentences = [
|
117 |
+
"passage: Fit Bodies Aren't Perfect, Either \n",
|
118 |
+
'passage: Royals attend extravagant ceremony to celebrate the opening of new museum',
|
119 |
+
'passage: Native-American Kids Doused With Beer at SD Hockey Game \n',
|
120 |
+
]
|
121 |
+
embeddings = model.encode(sentences)
|
122 |
+
print(embeddings.shape)
|
123 |
+
# [3, 1024]
|
124 |
+
|
125 |
+
# Get the similarity scores for the embeddings
|
126 |
+
similarities = model.similarity(embeddings, embeddings)
|
127 |
+
print(similarities.shape)
|
128 |
+
# [3, 3]
|
129 |
+
```
|
130 |
+
|
131 |
+
<!--
|
132 |
+
### Direct Usage (Transformers)
|
133 |
+
|
134 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
135 |
+
|
136 |
+
</details>
|
137 |
+
-->
|
138 |
+
|
139 |
+
<!--
|
140 |
+
### Downstream Usage (Sentence Transformers)
|
141 |
+
|
142 |
+
You can finetune this model on your own dataset.
|
143 |
+
|
144 |
+
<details><summary>Click to expand</summary>
|
145 |
+
|
146 |
+
</details>
|
147 |
+
-->
|
148 |
+
|
149 |
+
<!--
|
150 |
+
### Out-of-Scope Use
|
151 |
+
|
152 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
153 |
+
-->
|
154 |
+
|
155 |
+
## Evaluation
|
156 |
+
|
157 |
+
### Metrics
|
158 |
+
|
159 |
+
#### Knowledge Distillation
|
160 |
+
|
161 |
+
* Evaluated with [<code>MSEEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.MSEEvaluator)
|
162 |
+
|
163 |
+
| Metric | Value |
|
164 |
+
|:-----------------|:------------|
|
165 |
+
| **negative_mse** | **-0.0056** |
|
166 |
+
|
167 |
+
<!--
|
168 |
+
## Bias, Risks and Limitations
|
169 |
+
|
170 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
171 |
+
-->
|
172 |
+
|
173 |
+
<!--
|
174 |
+
### Recommendations
|
175 |
+
|
176 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
177 |
+
-->
|
178 |
+
|
179 |
+
## Training Details
|
180 |
+
|
181 |
+
### Training Dataset
|
182 |
+
|
183 |
+
#### Unnamed Dataset
|
184 |
+
|
185 |
+
|
186 |
+
* Size: 22,076 training samples
|
187 |
+
* Columns: <code>sentence_0</code> and <code>label</code>
|
188 |
+
* Approximate statistics based on the first 1000 samples:
|
189 |
+
| | sentence_0 | label |
|
190 |
+
|:--------|:----------------------------------------------------------------------------------|:--------------------------------------|
|
191 |
+
| type | string | list |
|
192 |
+
| details | <ul><li>min: 7 tokens</li><li>mean: 24.27 tokens</li><li>max: 55 tokens</li></ul> | <ul><li>size: 1024 elements</li></ul> |
|
193 |
+
* Samples:
|
194 |
+
| sentence_0 | label |
|
195 |
+
|:----------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------|
|
196 |
+
| <code>passage: Nahibal-an ni Jon Stewart kung kinsa ang modaog sa usa ka gubat tali sa Texas ug Florida <br></code> | <code>[0.028687365353107452, -0.017304804176092148, -0.04063289240002632, -0.06607247143983841, 0.012475084513425827, ...]</code> |
|
197 |
+
| <code>passage: Kinabahan si Sarah tungkol sa mga pagsubok at eksaminasyong pang-edukasyon ngunit nagtagumpay silang lahat!</code> | <code>[0.02698751911520958, -0.04083320125937462, -0.020052699372172356, -0.037999920547008514, 0.025929132476449013, ...]</code> |
|
198 |
+
| <code>passage: (Update)166645: Malinaw na ang obstruction sa N2 Northbound pagkatapos ng Ramp mula sa Umdloti. Mag-ingat sa Pagmaneho.</code> | <code>[0.04197411611676216, -0.017068173736333847, 0.005260208155959845, -0.02268386073410511, 0.016873840242624283, ...]</code> |
|
199 |
+
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss)
|
200 |
+
|
201 |
+
### Training Hyperparameters
|
202 |
+
#### Non-Default Hyperparameters
|
203 |
+
|
204 |
+
- `eval_strategy`: steps
|
205 |
+
- `per_device_train_batch_size`: 16
|
206 |
+
- `per_device_eval_batch_size`: 16
|
207 |
+
- `num_train_epochs`: 20
|
208 |
+
- `multi_dataset_batch_sampler`: round_robin
|
209 |
+
|
210 |
+
#### All Hyperparameters
|
211 |
+
<details><summary>Click to expand</summary>
|
212 |
+
|
213 |
+
- `overwrite_output_dir`: False
|
214 |
+
- `do_predict`: False
|
215 |
+
- `eval_strategy`: steps
|
216 |
+
- `prediction_loss_only`: True
|
217 |
+
- `per_device_train_batch_size`: 16
|
218 |
+
- `per_device_eval_batch_size`: 16
|
219 |
+
- `per_gpu_train_batch_size`: None
|
220 |
+
- `per_gpu_eval_batch_size`: None
|
221 |
+
- `gradient_accumulation_steps`: 1
|
222 |
+
- `eval_accumulation_steps`: None
|
223 |
+
- `torch_empty_cache_steps`: None
|
224 |
+
- `learning_rate`: 5e-05
|
225 |
+
- `weight_decay`: 0.0
|
226 |
+
- `adam_beta1`: 0.9
|
227 |
+
- `adam_beta2`: 0.999
|
228 |
+
- `adam_epsilon`: 1e-08
|
229 |
+
- `max_grad_norm`: 1
|
230 |
+
- `num_train_epochs`: 20
|
231 |
+
- `max_steps`: -1
|
232 |
+
- `lr_scheduler_type`: linear
|
233 |
+
- `lr_scheduler_kwargs`: {}
|
234 |
+
- `warmup_ratio`: 0.0
|
235 |
+
- `warmup_steps`: 0
|
236 |
+
- `log_level`: passive
|
237 |
+
- `log_level_replica`: warning
|
238 |
+
- `log_on_each_node`: True
|
239 |
+
- `logging_nan_inf_filter`: True
|
240 |
+
- `save_safetensors`: True
|
241 |
+
- `save_on_each_node`: False
|
242 |
+
- `save_only_model`: False
|
243 |
+
- `restore_callback_states_from_checkpoint`: False
|
244 |
+
- `no_cuda`: False
|
245 |
+
- `use_cpu`: False
|
246 |
+
- `use_mps_device`: False
|
247 |
+
- `seed`: 42
|
248 |
+
- `data_seed`: None
|
249 |
+
- `jit_mode_eval`: False
|
250 |
+
- `use_ipex`: False
|
251 |
+
- `bf16`: False
|
252 |
+
- `fp16`: False
|
253 |
+
- `fp16_opt_level`: O1
|
254 |
+
- `half_precision_backend`: auto
|
255 |
+
- `bf16_full_eval`: False
|
256 |
+
- `fp16_full_eval`: False
|
257 |
+
- `tf32`: None
|
258 |
+
- `local_rank`: 0
|
259 |
+
- `ddp_backend`: None
|
260 |
+
- `tpu_num_cores`: None
|
261 |
+
- `tpu_metrics_debug`: False
|
262 |
+
- `debug`: []
|
263 |
+
- `dataloader_drop_last`: False
|
264 |
+
- `dataloader_num_workers`: 0
|
265 |
+
- `dataloader_prefetch_factor`: None
|
266 |
+
- `past_index`: -1
|
267 |
+
- `disable_tqdm`: False
|
268 |
+
- `remove_unused_columns`: True
|
269 |
+
- `label_names`: None
|
270 |
+
- `load_best_model_at_end`: False
|
271 |
+
- `ignore_data_skip`: False
|
272 |
+
- `fsdp`: []
|
273 |
+
- `fsdp_min_num_params`: 0
|
274 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
275 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
276 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
277 |
+
- `deepspeed`: None
|
278 |
+
- `label_smoothing_factor`: 0.0
|
279 |
+
- `optim`: adamw_torch
|
280 |
+
- `optim_args`: None
|
281 |
+
- `adafactor`: False
|
282 |
+
- `group_by_length`: False
|
283 |
+
- `length_column_name`: length
|
284 |
+
- `ddp_find_unused_parameters`: None
|
285 |
+
- `ddp_bucket_cap_mb`: None
|
286 |
+
- `ddp_broadcast_buffers`: False
|
287 |
+
- `dataloader_pin_memory`: True
|
288 |
+
- `dataloader_persistent_workers`: False
|
289 |
+
- `skip_memory_metrics`: True
|
290 |
+
- `use_legacy_prediction_loop`: False
|
291 |
+
- `push_to_hub`: False
|
292 |
+
- `resume_from_checkpoint`: None
|
293 |
+
- `hub_model_id`: None
|
294 |
+
- `hub_strategy`: every_save
|
295 |
+
- `hub_private_repo`: False
|
296 |
+
- `hub_always_push`: False
|
297 |
+
- `gradient_checkpointing`: False
|
298 |
+
- `gradient_checkpointing_kwargs`: None
|
299 |
+
- `include_inputs_for_metrics`: False
|
300 |
+
- `eval_do_concat_batches`: True
|
301 |
+
- `fp16_backend`: auto
|
302 |
+
- `push_to_hub_model_id`: None
|
303 |
+
- `push_to_hub_organization`: None
|
304 |
+
- `mp_parameters`:
|
305 |
+
- `auto_find_batch_size`: False
|
306 |
+
- `full_determinism`: False
|
307 |
+
- `torchdynamo`: None
|
308 |
+
- `ray_scope`: last
|
309 |
+
- `ddp_timeout`: 1800
|
310 |
+
- `torch_compile`: False
|
311 |
+
- `torch_compile_backend`: None
|
312 |
+
- `torch_compile_mode`: None
|
313 |
+
- `dispatch_batches`: None
|
314 |
+
- `split_batches`: None
|
315 |
+
- `include_tokens_per_second`: False
|
316 |
+
- `include_num_input_tokens_seen`: False
|
317 |
+
- `neftune_noise_alpha`: None
|
318 |
+
- `optim_target_modules`: None
|
319 |
+
- `batch_eval_metrics`: False
|
320 |
+
- `eval_on_start`: False
|
321 |
+
- `eval_use_gather_object`: False
|
322 |
+
- `batch_sampler`: batch_sampler
|
323 |
+
- `multi_dataset_batch_sampler`: round_robin
|
324 |
+
|
325 |
+
</details>
|
326 |
+
|
327 |
+
### Training Logs
|
328 |
+
<details><summary>Click to expand</summary>
|
329 |
+
|
330 |
+
| Epoch | Step | Training Loss | negative_mse |
|
331 |
+
|:-------:|:-----:|:-------------:|:------------:|
|
332 |
+
| 0.1449 | 200 | - | -0.0077 |
|
333 |
+
| 0.2899 | 400 | - | -0.0072 |
|
334 |
+
| 0.3623 | 500 | 0.0001 | - |
|
335 |
+
| 0.4348 | 600 | - | -0.0070 |
|
336 |
+
| 0.5797 | 800 | - | -0.0068 |
|
337 |
+
| 0.7246 | 1000 | 0.0001 | -0.0067 |
|
338 |
+
| 0.8696 | 1200 | - | -0.0066 |
|
339 |
+
| 1.0 | 1380 | - | -0.0065 |
|
340 |
+
| 1.0145 | 1400 | - | -0.0065 |
|
341 |
+
| 1.0870 | 1500 | 0.0 | - |
|
342 |
+
| 1.1594 | 1600 | - | -0.0064 |
|
343 |
+
| 1.3043 | 1800 | - | -0.0064 |
|
344 |
+
| 1.4493 | 2000 | 0.0 | -0.0064 |
|
345 |
+
| 1.5942 | 2200 | - | -0.0063 |
|
346 |
+
| 1.7391 | 2400 | - | -0.0063 |
|
347 |
+
| 1.8116 | 2500 | 0.0 | - |
|
348 |
+
| 1.8841 | 2600 | - | -0.0063 |
|
349 |
+
| 2.0 | 2760 | - | -0.0063 |
|
350 |
+
| 2.0290 | 2800 | - | -0.0063 |
|
351 |
+
| 2.1739 | 3000 | 0.0 | -0.0062 |
|
352 |
+
| 2.3188 | 3200 | - | -0.0062 |
|
353 |
+
| 2.4638 | 3400 | - | -0.0061 |
|
354 |
+
| 2.5362 | 3500 | 0.0 | - |
|
355 |
+
| 2.6087 | 3600 | - | -0.0062 |
|
356 |
+
| 2.7536 | 3800 | - | -0.0061 |
|
357 |
+
| 2.8986 | 4000 | 0.0 | -0.0061 |
|
358 |
+
| 3.0 | 4140 | - | -0.0061 |
|
359 |
+
| 3.0435 | 4200 | - | -0.0061 |
|
360 |
+
| 3.1884 | 4400 | - | -0.0061 |
|
361 |
+
| 3.2609 | 4500 | 0.0 | - |
|
362 |
+
| 3.3333 | 4600 | - | -0.0061 |
|
363 |
+
| 3.4783 | 4800 | - | -0.0061 |
|
364 |
+
| 3.6232 | 5000 | 0.0 | -0.0060 |
|
365 |
+
| 3.7681 | 5200 | - | -0.0060 |
|
366 |
+
| 3.9130 | 5400 | - | -0.0060 |
|
367 |
+
| 3.9855 | 5500 | 0.0 | - |
|
368 |
+
| 4.0 | 5520 | - | -0.0060 |
|
369 |
+
| 4.0580 | 5600 | - | -0.0060 |
|
370 |
+
| 4.2029 | 5800 | - | -0.0060 |
|
371 |
+
| 4.3478 | 6000 | 0.0 | -0.0060 |
|
372 |
+
| 4.4928 | 6200 | - | -0.0059 |
|
373 |
+
| 4.6377 | 6400 | - | -0.0059 |
|
374 |
+
| 4.7101 | 6500 | 0.0 | - |
|
375 |
+
| 4.7826 | 6600 | - | -0.0059 |
|
376 |
+
| 4.9275 | 6800 | - | -0.0059 |
|
377 |
+
| 5.0 | 6900 | - | -0.0059 |
|
378 |
+
| 5.0725 | 7000 | 0.0 | -0.0059 |
|
379 |
+
| 5.2174 | 7200 | - | -0.0059 |
|
380 |
+
| 5.3623 | 7400 | - | -0.0059 |
|
381 |
+
| 5.4348 | 7500 | 0.0 | - |
|
382 |
+
| 5.5072 | 7600 | - | -0.0059 |
|
383 |
+
| 5.6522 | 7800 | - | -0.0059 |
|
384 |
+
| 5.7971 | 8000 | 0.0 | -0.0059 |
|
385 |
+
| 5.9420 | 8200 | - | -0.0059 |
|
386 |
+
| 6.0 | 8280 | - | -0.0058 |
|
387 |
+
| 6.0870 | 8400 | - | -0.0058 |
|
388 |
+
| 6.1594 | 8500 | 0.0 | - |
|
389 |
+
| 6.2319 | 8600 | - | -0.0058 |
|
390 |
+
| 6.3768 | 8800 | - | -0.0059 |
|
391 |
+
| 6.5217 | 9000 | 0.0 | -0.0058 |
|
392 |
+
| 6.6667 | 9200 | - | -0.0058 |
|
393 |
+
| 6.8116 | 9400 | - | -0.0058 |
|
394 |
+
| 6.8841 | 9500 | 0.0 | - |
|
395 |
+
| 6.9565 | 9600 | - | -0.0058 |
|
396 |
+
| 7.0 | 9660 | - | -0.0058 |
|
397 |
+
| 7.1014 | 9800 | - | -0.0058 |
|
398 |
+
| 7.2464 | 10000 | 0.0 | -0.0058 |
|
399 |
+
| 7.3913 | 10200 | - | -0.0058 |
|
400 |
+
| 7.5362 | 10400 | - | -0.0058 |
|
401 |
+
| 7.6087 | 10500 | 0.0 | - |
|
402 |
+
| 7.6812 | 10600 | - | -0.0058 |
|
403 |
+
| 7.8261 | 10800 | - | -0.0058 |
|
404 |
+
| 7.9710 | 11000 | 0.0 | -0.0058 |
|
405 |
+
| 8.0 | 11040 | - | -0.0058 |
|
406 |
+
| 8.1159 | 11200 | - | -0.0057 |
|
407 |
+
| 8.2609 | 11400 | - | -0.0057 |
|
408 |
+
| 8.3333 | 11500 | 0.0 | - |
|
409 |
+
| 8.4058 | 11600 | - | -0.0058 |
|
410 |
+
| 8.5507 | 11800 | - | -0.0058 |
|
411 |
+
| 8.6957 | 12000 | 0.0 | -0.0057 |
|
412 |
+
| 8.8406 | 12200 | - | -0.0058 |
|
413 |
+
| 8.9855 | 12400 | - | -0.0057 |
|
414 |
+
| 9.0 | 12420 | - | -0.0057 |
|
415 |
+
| 9.0580 | 12500 | 0.0 | - |
|
416 |
+
| 9.1304 | 12600 | - | -0.0057 |
|
417 |
+
| 9.2754 | 12800 | - | -0.0057 |
|
418 |
+
| 9.4203 | 13000 | 0.0 | -0.0057 |
|
419 |
+
| 9.5652 | 13200 | - | -0.0057 |
|
420 |
+
| 9.7101 | 13400 | - | -0.0057 |
|
421 |
+
| 9.7826 | 13500 | 0.0 | - |
|
422 |
+
| 9.8551 | 13600 | - | -0.0057 |
|
423 |
+
| 10.0 | 13800 | - | -0.0057 |
|
424 |
+
| 10.1449 | 14000 | 0.0 | -0.0057 |
|
425 |
+
| 10.2899 | 14200 | - | -0.0057 |
|
426 |
+
| 10.4348 | 14400 | - | -0.0057 |
|
427 |
+
| 10.5072 | 14500 | 0.0 | - |
|
428 |
+
| 10.5797 | 14600 | - | -0.0057 |
|
429 |
+
| 10.7246 | 14800 | - | -0.0057 |
|
430 |
+
| 10.8696 | 15000 | 0.0 | -0.0057 |
|
431 |
+
| 11.0 | 15180 | - | -0.0057 |
|
432 |
+
| 11.0145 | 15200 | - | -0.0057 |
|
433 |
+
| 11.1594 | 15400 | - | -0.0057 |
|
434 |
+
| 11.2319 | 15500 | 0.0 | - |
|
435 |
+
| 11.3043 | 15600 | - | -0.0057 |
|
436 |
+
| 11.4493 | 15800 | - | -0.0057 |
|
437 |
+
| 11.5942 | 16000 | 0.0 | -0.0057 |
|
438 |
+
| 11.7391 | 16200 | - | -0.0056 |
|
439 |
+
| 11.8841 | 16400 | - | -0.0056 |
|
440 |
+
| 11.9565 | 16500 | 0.0 | - |
|
441 |
+
| 12.0 | 16560 | - | -0.0057 |
|
442 |
+
| 12.0290 | 16600 | - | -0.0056 |
|
443 |
+
| 12.1739 | 16800 | - | -0.0056 |
|
444 |
+
| 12.3188 | 17000 | 0.0 | -0.0057 |
|
445 |
+
| 12.4638 | 17200 | - | -0.0056 |
|
446 |
+
| 12.6087 | 17400 | - | -0.0056 |
|
447 |
+
| 12.6812 | 17500 | 0.0 | - |
|
448 |
+
| 12.7536 | 17600 | - | -0.0056 |
|
449 |
+
| 12.8986 | 17800 | - | -0.0056 |
|
450 |
+
| 13.0 | 17940 | - | -0.0056 |
|
451 |
+
| 13.0435 | 18000 | 0.0 | -0.0056 |
|
452 |
+
| 13.1884 | 18200 | - | -0.0056 |
|
453 |
+
| 13.3333 | 18400 | - | -0.0056 |
|
454 |
+
| 13.4058 | 18500 | 0.0 | - |
|
455 |
+
| 13.4783 | 18600 | - | -0.0056 |
|
456 |
+
| 13.6232 | 18800 | - | -0.0056 |
|
457 |
+
| 13.7681 | 19000 | 0.0 | -0.0056 |
|
458 |
+
| 13.9130 | 19200 | - | -0.0056 |
|
459 |
+
| 14.0 | 19320 | - | -0.0056 |
|
460 |
+
| 14.0580 | 19400 | - | -0.0056 |
|
461 |
+
| 14.1304 | 19500 | 0.0 | - |
|
462 |
+
| 14.2029 | 19600 | - | -0.0056 |
|
463 |
+
| 14.3478 | 19800 | - | -0.0056 |
|
464 |
+
| 14.4928 | 20000 | 0.0 | -0.0056 |
|
465 |
+
| 14.6377 | 20200 | - | -0.0056 |
|
466 |
+
| 14.7826 | 20400 | - | -0.0056 |
|
467 |
+
| 14.8551 | 20500 | 0.0 | - |
|
468 |
+
| 14.9275 | 20600 | - | -0.0056 |
|
469 |
+
| 15.0 | 20700 | - | -0.0056 |
|
470 |
+
| 15.0725 | 20800 | - | -0.0056 |
|
471 |
+
| 15.2174 | 21000 | 0.0 | -0.0056 |
|
472 |
+
| 15.3623 | 21200 | - | -0.0056 |
|
473 |
+
| 15.5072 | 21400 | - | -0.0056 |
|
474 |
+
| 15.5797 | 21500 | 0.0 | - |
|
475 |
+
| 15.6522 | 21600 | - | -0.0056 |
|
476 |
+
| 15.7971 | 21800 | - | -0.0056 |
|
477 |
+
| 15.9420 | 22000 | 0.0 | -0.0056 |
|
478 |
+
| 16.0 | 22080 | - | -0.0056 |
|
479 |
+
| 16.0870 | 22200 | - | -0.0056 |
|
480 |
+
| 16.2319 | 22400 | - | -0.0056 |
|
481 |
+
| 16.3043 | 22500 | 0.0 | - |
|
482 |
+
| 16.3768 | 22600 | - | -0.0056 |
|
483 |
+
| 16.5217 | 22800 | - | -0.0056 |
|
484 |
+
| 16.6667 | 23000 | 0.0 | -0.0056 |
|
485 |
+
| 16.8116 | 23200 | - | -0.0056 |
|
486 |
+
| 16.9565 | 23400 | - | -0.0056 |
|
487 |
+
| 17.0 | 23460 | - | -0.0056 |
|
488 |
+
| 17.0290 | 23500 | 0.0 | - |
|
489 |
+
| 17.1014 | 23600 | - | -0.0056 |
|
490 |
+
| 17.2464 | 23800 | - | -0.0056 |
|
491 |
+
| 17.3913 | 24000 | 0.0 | -0.0056 |
|
492 |
+
| 17.5362 | 24200 | - | -0.0056 |
|
493 |
+
| 17.6812 | 24400 | - | -0.0056 |
|
494 |
+
| 17.7536 | 24500 | 0.0 | - |
|
495 |
+
| 17.8261 | 24600 | - | -0.0056 |
|
496 |
+
| 17.9710 | 24800 | - | -0.0056 |
|
497 |
+
| 18.0 | 24840 | - | -0.0056 |
|
498 |
+
| 18.1159 | 25000 | 0.0 | -0.0056 |
|
499 |
+
| 18.2609 | 25200 | - | -0.0056 |
|
500 |
+
| 18.4058 | 25400 | - | -0.0056 |
|
501 |
+
| 18.4783 | 25500 | 0.0 | - |
|
502 |
+
| 18.5507 | 25600 | - | -0.0056 |
|
503 |
+
| 18.6957 | 25800 | - | -0.0056 |
|
504 |
+
|
505 |
+
</details>
|
506 |
+
|
507 |
+
### Framework Versions
|
508 |
+
- Python: 3.10.14
|
509 |
+
- Sentence Transformers: 3.1.1
|
510 |
+
- Transformers: 4.44.2
|
511 |
+
- PyTorch: 2.4.0
|
512 |
+
- Accelerate: 0.34.2
|
513 |
+
- Datasets: 3.0.0
|
514 |
+
- Tokenizers: 0.19.1
|
515 |
+
|
516 |
+
## Citation
|
517 |
+
|
518 |
+
### BibTeX
|
519 |
+
|
520 |
+
#### Sentence Transformers
|
521 |
+
```bibtex
|
522 |
+
@inproceedings{reimers-2019-sentence-bert,
|
523 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
524 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
525 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
526 |
+
month = "11",
|
527 |
+
year = "2019",
|
528 |
+
publisher = "Association for Computational Linguistics",
|
529 |
+
url = "https://arxiv.org/abs/1908.10084",
|
530 |
+
}
|
531 |
+
```
|
532 |
+
|
533 |
+
#### MSELoss
|
534 |
+
```bibtex
|
535 |
+
@inproceedings{reimers-2020-multilingual-sentence-bert,
|
536 |
+
title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
|
537 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
538 |
+
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
|
539 |
+
month = "11",
|
540 |
+
year = "2020",
|
541 |
+
publisher = "Association for Computational Linguistics",
|
542 |
+
url = "https://arxiv.org/abs/2004.09813",
|
543 |
+
}
|
544 |
+
```
|
545 |
+
|
546 |
+
<!--
|
547 |
+
## Glossary
|
548 |
+
|
549 |
+
*Clearly define terms in order to be accessible across audiences.*
|
550 |
+
-->
|
551 |
+
|
552 |
+
<!--
|
553 |
+
## Model Card Authors
|
554 |
+
|
555 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
556 |
+
-->
|
557 |
+
|
558 |
+
<!--
|
559 |
+
## Model Card Contact
|
560 |
+
|
561 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
562 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/kaggle/input/e5-multilingual-fil-model/output/intfloat/multilingual-e5-large",
|
3 |
+
"architectures": [
|
4 |
+
"XLMRobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 1024,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 4096,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 514,
|
17 |
+
"model_type": "xlm-roberta",
|
18 |
+
"num_attention_heads": 16,
|
19 |
+
"num_hidden_layers": 24,
|
20 |
+
"output_past": true,
|
21 |
+
"pad_token_id": 1,
|
22 |
+
"position_embedding_type": "absolute",
|
23 |
+
"torch_dtype": "float32",
|
24 |
+
"transformers_version": "4.45.1",
|
25 |
+
"type_vocab_size": 1,
|
26 |
+
"use_cache": true,
|
27 |
+
"vocab_size": 250002
|
28 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.1.1",
|
4 |
+
"transformers": "4.45.1",
|
5 |
+
"pytorch": "2.4.0+cpu"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:03c5991279f5e5b9f6da8d59b938e5f2ef7a5dacdade4d886443d0e3239b229d
|
3 |
+
size 2239607176
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
sentencepiece.bpe.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
|
3 |
+
size 5069051
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "<unk>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:883b037111086fd4dfebbbc9b7cee11e1517b5e0c0514879478661440f137085
|
3 |
+
size 17082987
|
tokenizer_config.json
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"250001": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "<s>",
|
45 |
+
"clean_up_tokenization_spaces": true,
|
46 |
+
"cls_token": "<s>",
|
47 |
+
"eos_token": "</s>",
|
48 |
+
"mask_token": "<mask>",
|
49 |
+
"max_length": 512,
|
50 |
+
"model_max_length": 512,
|
51 |
+
"pad_to_multiple_of": null,
|
52 |
+
"pad_token": "<pad>",
|
53 |
+
"pad_token_type_id": 0,
|
54 |
+
"padding_side": "right",
|
55 |
+
"sep_token": "</s>",
|
56 |
+
"stride": 0,
|
57 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
58 |
+
"truncation_side": "right",
|
59 |
+
"truncation_strategy": "longest_first",
|
60 |
+
"unk_token": "<unk>"
|
61 |
+
}
|