File size: 4,064 Bytes
37bf7e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
import torch
from transformers import AutoModelForTokenClassification, AutoModelForSequenceClassification, AdamW, get_linear_schedule_with_warmup, AutoModel
from transformers import BertForTokenClassification, BertForSequenceClassification,BertPreTrainedModel, BertModel
import torch.nn as nn
from .utils import *
import torch.nn.functional as F
from ekphrasis.classes.preprocessor import TextPreProcessor
from ekphrasis.classes.tokenizer import SocialTokenizer
from ekphrasis.dicts.emoticons import emoticons
import re
from transformers import AutoTokenizer, AutoModelForTokenClassification, AdamW, get_linear_schedule_with_warmup
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
class Model_Rational_Label(BertPreTrainedModel):
def __init__(self,config,params):
super().__init__(config)
self.num_labels=params['num_classes']
self.num_targets=params['targets_num']
self.impact_factor=params['rationale_impact']
self.target_factor=params['target_impact']
self.bert = BertModel(config,add_pooling_layer=False)
self.pooler=BertPooler(config)
self.token_dropout = nn.Dropout(0.2)
self.token_classifier = nn.Linear(config.hidden_size, 2)
self.dropout = nn.Dropout(0.2)
self.classifier = nn.Linear(config.hidden_size, self.num_labels)
self.target_dropout = nn.Dropout(0.2)
self.target_classifier = nn.Linear(config.hidden_size, self.num_targets)
self.init_weights()
# self.embeddings = AutoModelForTokenClassification.from_pretrained(params['model_path'], cache_dir=params['cache_path'])
def forward(self, input_ids=None, mask=None, attn=None, labels=None, targets=None):
outputs = self.bert(input_ids, mask)
# out = outputs.last_hidden_state
out=outputs[0]
logits = self.token_classifier(self.token_dropout(out))
# mean_pooling = torch.mean(out, 1)
# max_pooling, _ = torch.max(out, 1)
# embed = torch.cat((mean_pooling, max_pooling), 1)
embed=self.pooler(outputs[0])
y_pred = self.classifier(self.dropout(embed))
y_pred_target = torch.sigmoid(self.target_classifier(self.target_dropout(embed)))
loss_token = None
loss_target= None
loss_label = None
loss_total = None
if attn is not None:
loss_fct = nn.CrossEntropyLoss()
### Adding weighted
# Only keep active parts of the loss
if mask is not None:
class_weights=torch.tensor([1.0,1.0],dtype=torch.float).to(input_ids.device)
loss_funct = nn.CrossEntropyLoss(class_weights)
active_loss = mask.view(-1) == 1
active_logits = logits.view(-1, 2)
active_labels = torch.where(
active_loss, attn.view(-1), torch.tensor(loss_fct.ignore_index).type_as(attn)
)
loss_token = loss_funct(active_logits, active_labels)
else:
loss_token = loss_funct(logits.view(-1, 2), attn.view(-1))
loss_total=self.impact_factor*loss_token
if targets is not None:
loss_funct = nn.BCELoss()
loss_logits = loss_funct(y_pred_target.view(-1, self.num_targets), targets.view(-1, self.num_targets))
loss_targets= loss_logits
loss_total+=self.target_factor*loss_targets
if labels is not None:
loss_funct = nn.CrossEntropyLoss()
loss_logits = loss_funct(y_pred.view(-1, self.num_labels), labels.view(-1))
loss_label= loss_logits
if(loss_total is not None):
loss_total+=loss_label
else:
loss_total=loss_label
if(loss_total is not None):
return y_pred,y_pred_target,logits, loss_total
else:
return y_pred,y_pred_target,logits
|