import torch from transformers import AutoModelForTokenClassification, AutoModelForSequenceClassification, AdamW, get_linear_schedule_with_warmup from transformers import BertForTokenClassification, BertForSequenceClassification,BertPreTrainedModel, BertModel import torch.nn as nn import torch.nn.functional as F class BertPooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states): # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output class Model_Rational_Label(BertPreTrainedModel): def __init__(self,config): super().__init__(config) self.num_labels=2 self.impact_factor=0.8 self.bert = BertModel(config,add_pooling_layer=False) self.bert_pooler=BertPooler(config) self.token_dropout = nn.Dropout(0.1) self.token_classifier = nn.Linear(config.hidden_size, 2) self.dropout = nn.Dropout(0.1) self.classifier = nn.Linear(config.hidden_size, self.num_labels) self.init_weights() # self.embeddings = AutoModelForTokenClassification.from_pretrained(params['model_path'], cache_dir=params['cache_path']) def forward(self, input_ids=None, attention_mask=None, token_type_ids=None, attn=None, labels=None): outputs = self.bert(input_ids, attention_mask) # out = outputs.last_hidden_state out=outputs[0] logits = self.token_classifier(self.token_dropout(out)) # mean_pooling = torch.mean(out, 1) # max_pooling, _ = torch.max(out, 1) # embed = torch.cat((mean_pooling, max_pooling), 1) embed=self.bert_pooler(outputs[0]) y_pred = self.classifier(self.dropout(embed)) loss_token = None loss_label = None loss_total = None if attn is not None: loss_fct = nn.CrossEntropyLoss() # Only keep active parts of the loss if mask is not None: active_loss = mask.view(-1) == 1 active_logits = logits.view(-1, 2) active_labels = torch.where( active_loss, attn.view(-1), torch.tensor(loss_fct.ignore_index).type_as(attn) ) loss_token = loss_fct(active_logits, active_labels) else: loss_token = loss_fct(logits.view(-1, 2), attn.view(-1)) loss_total=self.impact_factor*loss_token if labels is not None: loss_funct = nn.CrossEntropyLoss() loss_logits = loss_funct(y_pred.view(-1, self.num_labels), labels.view(-1)) loss_label= loss_logits if(loss_total is not None): loss_total+=loss_label else: loss_total=loss_label if(loss_total is not None): return y_pred, logits, loss_total else: return y_pred, logits