File size: 2,488 Bytes
628c5a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
---
library_name: transformers
license: apache-2.0
base_model: facebook/hubert-base-ls960
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: hubert-base-ls960-finetuned-gtzan
  results:
  - task:
      name: Audio Classification
      type: audio-classification
    dataset:
      name: GTZAN
      type: marsyas/gtzan
      config: all
      split: train
      args: all
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.82
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# hubert-base-ls960-finetuned-gtzan

This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6653
- Accuracy: 0.82

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 1.931         | 0.9956 | 112  | 1.8442          | 0.38     |
| 1.4533        | 2.0    | 225  | 1.4234          | 0.56     |
| 1.5759        | 2.9956 | 337  | 1.3121          | 0.58     |
| 0.9118        | 4.0    | 450  | 1.1423          | 0.68     |
| 0.9785        | 4.9956 | 562  | 0.9830          | 0.71     |
| 0.7014        | 6.0    | 675  | 0.8055          | 0.8      |
| 0.5983        | 6.9956 | 787  | 0.7071          | 0.76     |
| 0.3568        | 8.0    | 900  | 0.7417          | 0.77     |
| 0.4118        | 8.9956 | 1012 | 0.5920          | 0.83     |
| 0.4934        | 9.9556 | 1120 | 0.6653          | 0.82     |


### Framework versions

- Transformers 4.46.3
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.20.3