--- library_name: transformers license: apache-2.0 base_model: facebook/hubert-base-ls960 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: hubert-base-ls960-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.82 --- # hubert-base-ls960-finetuned-gtzan This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.6653 - Accuracy: 0.82 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 1.931 | 0.9956 | 112 | 1.8442 | 0.38 | | 1.4533 | 2.0 | 225 | 1.4234 | 0.56 | | 1.5759 | 2.9956 | 337 | 1.3121 | 0.58 | | 0.9118 | 4.0 | 450 | 1.1423 | 0.68 | | 0.9785 | 4.9956 | 562 | 0.9830 | 0.71 | | 0.7014 | 6.0 | 675 | 0.8055 | 0.8 | | 0.5983 | 6.9956 | 787 | 0.7071 | 0.76 | | 0.3568 | 8.0 | 900 | 0.7417 | 0.77 | | 0.4118 | 8.9956 | 1012 | 0.5920 | 0.83 | | 0.4934 | 9.9556 | 1120 | 0.6653 | 0.82 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.20.3