--- library_name: transformers license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - PolyAI/minds14 metrics: - wer model-index: - name: whisper-small-dv results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: PolyAI/minds14 type: PolyAI/minds14 config: en-US split: train args: en-US metrics: - name: Wer type: wer value: 0.3010625737898465 --- # whisper-small-dv This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set: - Loss: 0.5722 - Wer Ortho: 0.3023 - Wer: 0.3011 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 2 - training_steps: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:| | No log | 0.0714 | 2 | 0.5676 | 0.3140 | 0.3158 | | No log | 0.1429 | 4 | 0.5642 | 0.3054 | 0.3076 | | No log | 0.2143 | 6 | 0.5657 | 0.3004 | 0.3017 | | No log | 0.2857 | 8 | 0.5681 | 0.3023 | 0.3034 | | No log | 0.3571 | 10 | 0.5722 | 0.3023 | 0.3011 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.4.0+cpu - Datasets 3.1.0 - Tokenizers 0.20.3