a2c-PandaReachDense-v3 / config.json
HazemHM's picture
Initial commit
316c6e4
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7e00831f23b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e00831f5640>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1696087070826438074, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAm+l9P25V2r5IF5Q+x44Cvjju8b4GeB++2PLcv+V9Vz0mfCw/x44Cvjju8b4GeB++lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAcIbDP6Quh7+YmpQ9HfXEvrxXDb95xZm/tCa/v3toBbxypZM+UNOpvSgsP7+fGyC/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACb6X0/blXavkgXlD7FhM8/333Iv2p+kL/HjgK+OO7xvgZ4H75Iiu+/9IDXvzckrr/Y8ty/5X1XPSZ8LD9qtF+/pSxIP0ja677HjgK+OO7xvgZ4H75Iiu+/9IDXvzckrr+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.9918458 -0.42643303 0.28924012]\n [-0.12749778 -0.4725206 -0.15573129]\n [-1.726161 0.0526103 0.67376935]\n [-0.12749778 -0.4725206 -0.15573129]]", "desired_goal": "[[ 1.5275402 -1.0561109 0.07256049]\n [-0.38468257 -0.55212 -1.2013389 ]\n [-1.4933686 -0.00814259 0.28837162]\n [-0.08292258 -0.7467675 -0.62542146]]", "observation": "[[ 0.9918458 -0.42643303 0.28924012 1.6212393 -1.5663413 -1.1288579 ]\n [-0.12749778 -0.4725206 -0.15573129 -1.8714075 -1.6836228 -1.3604802 ]\n [-1.726161 0.0526103 0.67376935 -0.87384665 0.7819312 -0.46064973]\n [-0.12749778 -0.4725206 -0.15573129 -1.8714075 -1.6836228 -1.3604802 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAXSwMPDZjE716VA49ay5TPf4SCj6lEIs+wJdyPRoT+D19z4M+aI4Huj6WRD0ZSws+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.0085555 -0.03598329 0.03474853]\n [ 0.05155794 0.13483807 0.27161136]\n [ 0.05922675 0.12113018 0.25744238]\n [-0.00051711 0.04799484 0.13602866]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv2nnMdLg4wSMAWyUSwGMAXSUR0Cq+4qQzUI+dX2UKGgGR7+2J1q33HrAaAdLAmgIR0Cq+1Hl4keIdX2UKGgGR7/QZ8a4tpVTaAdLA2gIR0Cq+xgOavzOdX2UKGgGR7/I14xDb8FZaAdLA2gIR0Cq+uPhAGB4dX2UKGgGR7/QN6w+t8u0aAdLA2gIR0Cq+5pY1YQrdX2UKGgGR7/SGQSzw+dLaAdLA2gIR0Cq+2HP/rB1dX2UKGgGR7+g8yN4qwyJaAdLAWgIR0Cq+2Yk3S8bdX2UKGgGR7/W2ETQE6kqaAdLBGgIR0Cq+yxZdOZcdX2UKGgGR7/KlKsdT5wgaAdLA2gIR0Cq+vFnyup0dX2UKGgGR7/QjDsMRYigaAdLA2gIR0Cq+6eIdlundX2UKGgGR7/HkU9IPK+0aAdLAmgIR0Cq+zbaIvaldX2UKGgGR7/KS7oSteUqaAdLA2gIR0Cq+3Tu4PPLdX2UKGgGR7/LbQC0WuYAaAdLA2gIR0Cq+v/TkQwsdX2UKGgGR7/R7aqS5iEyaAdLA2gIR0Cq+7ZtelbedX2UKGgGR7/CMzdk8RthaAdLAmgIR0Cq+z/nOjZddX2UKGgGR7/UQv6CUX54aAdLA2gIR0Cq+4M1sLv1dX2UKGgGR7+4GbCrLhaUaAdLAmgIR0Cq+0lUADJVdX2UKGgGR7/IRuCPIXCTaAdLA2gIR0Cq+w6ZH/cWdX2UKGgGR7/K801qFh5PaAdLA2gIR0Cq+8cLa24NdX2UKGgGR7+ZZr56+nIiaAdLAWgIR0Cq+4p1JUYLdX2UKGgGR7+ihrWRRuTBaAdLAWgIR0Cq+8spXp4bdX2UKGgGR7+5wT/Q0GeMaAdLAmgIR0Cq+xlEZzgddX2UKGgGR7+8aJhvze41aAdLAmgIR0Cq+9j2JzkqdX2UKGgGR7/PAyEcsDnvaAdLA2gIR0Cq+5xj8UEgdX2UKGgGR7/bsgdOqNp/aAdLBGgIR0Cq+2Kji4rjdX2UKGgGR7/RZwGW2PT5aAdLA2gIR0Cq+yt6gM+edX2UKGgGR7+9WeYlY2bYaAdLAmgIR0Cq+6bYChexdX2UKGgGR7/AO7xusLfDaAdLAmgIR0Cq+2zt9hJAdX2UKGgGR7/FeeFtbcGkaAdLA2gIR0Cq++fmDDjzdX2UKGgGR7+mg8KXv6TGaAdLAWgIR0Cq++vGQ0XQdX2UKGgGR7/J2HLzPKMeaAdLA2gIR0Cq+znO0LMLdX2UKGgGR7/KHbAUL2HtaAdLA2gIR0Cq+7LqD9OzdX2UKGgGR7/G7NB4Uvf1aAdLA2gIR0Cq+3k+xGDudX2UKGgGR7/QBSDRMN+caAdLA2gIR0Cq+0huXNTtdX2UKGgGR7/cDUVi4J/oaAdLBGgIR0Cq+/6lLvkSdX2UKGgGR7/J1KXfIjnnaAdLA2gIR0Cq+8H6uW8idX2UKGgGR7/RT+vQnhKlaAdLA2gIR0Cq+4gb6xgRdX2UKGgGR7/OD/2kBS1maAdLA2gIR0Cq+1SLZSNwdX2UKGgGR7/TA8SwnpjdaAdLA2gIR0Cq/ApvxYq5dX2UKGgGR7/FFKCg9NeuaAdLA2gIR0Cq+5PVurIYdX2UKGgGR7/R/9Hc1wYMaAdLBWgIR0Cq+9eBQN1AdX2UKGgGR7/Tj6N2ki2VaAdLA2gIR0Cq+2KAJ9iMdX2UKGgGR7/J8D0UXYUWaAdLA2gIR0Cq/BiCSRr8dX2UKGgGR7/M2fChvitJaAdLA2gIR0Cq++L7O3UhdX2UKGgGR7/Y/tIClrM1aAdLBWgIR0Cq+6lyJbdKdX2UKGgGR7/SbyH2ys0YaAdLA2gIR0Cq/CZBLPD6dX2UKGgGR7/eTXarWAf/aAdLBGgIR0Cq+3RW1c+rdX2UKGgGR7/DL5hz/6wdaAdLAmgIR0Cq+7NwiqyXdX2UKGgGR7/R+pfhMrVfaAdLA2gIR0Cq+/FmOEM9dX2UKGgGR7/UXBxgiNbUaAdLA2gIR0Cq/DJVKf4AdX2UKGgGR7/EXizcAR02aAdLAmgIR0Cq+7vKdQO4dX2UKGgGR7/LzqbBoEjgaAdLA2gIR0Cq+4DLjghsdX2UKGgGR7/DPv8ZUDMeaAdLAmgIR0Cq+4wkona4dX2UKGgGR7/WSeiBXjlxaAdLBGgIR0Cq/AX71qWUdX2UKGgGR7+oD3dsSCe3aAdLAWgIR0Cq+5Eq+ajOdX2UKGgGR7/TZUT+NtIkaAdLBGgIR0Cq/EeS8rZrdX2UKGgGR7/a0Lc9GI9DaAdLBGgIR0Cq+9DohY/3dX2UKGgGR7+0hW5paiblaAdLAmgIR0Cq/A9t/FzddX2UKGgGR7/cJE6T4cm0aAdLBGgIR0Cq+6QpnYg8dX2UKGgGR7/ZKoQ4CIUKaAdLBGgIR0Cq/FpZGKAKdX2UKGgGR7/Pxri2lVLjaAdLA2gIR0Cq/B3hfjS5dX2UKGgGR7/buogmqo60aAdLBGgIR0Cq++P420iRdX2UKGgGR7/BwrDqGDcuaAdLAmgIR0Cq+6yjHn2adX2UKGgGR7+48p1A7gbZaAdLAmgIR0Cq++v4dp7DdX2UKGgGR7/GaLn9vS+haAdLA2gIR0Cq/GbAUL2IdX2UKGgGR7/SrIo3Jgb7aAdLA2gIR0Cq/Co5YHPedX2UKGgGR7/ROMERraduaAdLA2gIR0Cq+7uBMBZIdX2UKGgGR7/HdWQwK0D2aAdLA2gIR0Cq+/rfk3judX2UKGgGR7/NWRzRx95RaAdLA2gIR0Cq/HYNiH6/dX2UKGgGR7/GLyc0+C9RaAdLA2gIR0Cq/DmR3eN2dX2UKGgGR7/LHRTjvNNbaAdLA2gIR0Cq/AeFDfFadX2UKGgGR7/WHYpUgjhUaAdLBGgIR0Cq+8xlYlpodX2UKGgGR7/If7rLQokSaAdLA2gIR0Cq/EhJRO1wdX2UKGgGR7+ijYZl4C6paAdLAWgIR0Cq+9M5n13/dX2UKGgGR7/Y+6iCaqjraAdLBGgIR0Cq/ImNBF/hdX2UKGgGR7/C2zfJmuklaAdLAmgIR0Cq/BLs0HhTdX2UKGgGR7/MwgTyrgfmaAdLA2gIR0Cq/FTP0I1MdX2UKGgGR7/ScmShakhzaAdLA2gIR0Cq+9+mWMS9dX2UKGgGR7/NCiyprDZUaAdLA2gIR0Cq/JWnsLOSdX2UKGgGR7+oLkS26TW5aAdLAWgIR0Cq/FkGA09AdX2UKGgGR7/Gl5WzWwu/aAdLA2gIR0Cq/B9Net0WdX2UKGgGR7/ACQLeANG3aAdLAmgIR0Cq/GO/1xsEdX2UKGgGR7/EivgWJrLyaAdLAmgIR0Cq/CnuRcNZdX2UKGgGR7/YbqQiiZfEaAdLBGgIR0Cq+/NL127ndX2UKGgGR7/fFPSDyvs7aAdLBGgIR0Cq/KmK64DtdX2UKGgGR7+/s8gZCOWCaAdLAmgIR0Cq/DLu6VdHdX2UKGgGR7/FrzoUzsQeaAdLA2gIR0Cq/HFjEvTPdX2UKGgGR7/AZdfLLZBcaAdLAmgIR0Cq/LRgRbr1dX2UKGgGR7/A16Vt4zJqaAdLAmgIR0Cq/D3AmAskdX2UKGgGR7/RrDqGDcubaAdLA2gIR0Cq/ALB0p3HdX2UKGgGR7/IRs/IKc/daAdLA2gIR0Cq/MC7kGRndX2UKGgGR7/XcL0Bfa6CaAdLBGgIR0Cq/IQy6+WXdX2UKGgGR7/Qo60Y0l7daAdLA2gIR0Cq/Eqji4rjdX2UKGgGR7/Uz7di2DxtaAdLBGgIR0Cq/BOinHeadX2UKGgGR7/AdmQKa5PNaAdLAmgIR0Cq/I9FOO81dX2UKGgGR7/L4nndO6/ZaAdLA2gIR0Cq/NANgBtDdX2UKGgGR7/LC0ngHeJpaAdLA2gIR0Cq/FnN5dGBdX2UKGgGR7+46NlyzXz2aAdLAmgIR0Cq/NoAGSpzdX2UKGgGR7/QwAlv60pmaAdLA2gIR0Cq/J1vES/TdX2UKGgGR7/ZdMj/uLJkaAdLBGgIR0Cq/CifpUxVdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}