Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,605 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- multilingual
|
5 |
+
- en
|
6 |
+
- ru
|
7 |
+
- es
|
8 |
+
- fr
|
9 |
+
- de
|
10 |
+
- it
|
11 |
+
- pt
|
12 |
+
- pl
|
13 |
+
- nl
|
14 |
+
- vi
|
15 |
+
- tr
|
16 |
+
- sv
|
17 |
+
- id
|
18 |
+
- ro
|
19 |
+
- cs
|
20 |
+
- zh
|
21 |
+
- hu
|
22 |
+
- ja
|
23 |
+
- th
|
24 |
+
- fi
|
25 |
+
- fa
|
26 |
+
- uk
|
27 |
+
- da
|
28 |
+
- el
|
29 |
+
- 'no'
|
30 |
+
- bg
|
31 |
+
- sk
|
32 |
+
- ko
|
33 |
+
- ar
|
34 |
+
- lt
|
35 |
+
- ca
|
36 |
+
- sl
|
37 |
+
- he
|
38 |
+
- et
|
39 |
+
- lv
|
40 |
+
- hi
|
41 |
+
- sq
|
42 |
+
- ms
|
43 |
+
- az
|
44 |
+
- sr
|
45 |
+
- ta
|
46 |
+
- hr
|
47 |
+
- kk
|
48 |
+
- is
|
49 |
+
- ml
|
50 |
+
- mr
|
51 |
+
- te
|
52 |
+
- af
|
53 |
+
- gl
|
54 |
+
- fil
|
55 |
+
- be
|
56 |
+
- mk
|
57 |
+
- eu
|
58 |
+
- bn
|
59 |
+
- ka
|
60 |
+
- mn
|
61 |
+
- bs
|
62 |
+
- uz
|
63 |
+
- ur
|
64 |
+
- sw
|
65 |
+
- yue
|
66 |
+
- ne
|
67 |
+
- kn
|
68 |
+
- kaa
|
69 |
+
- gu
|
70 |
+
- si
|
71 |
+
- cy
|
72 |
+
- eo
|
73 |
+
- la
|
74 |
+
- hy
|
75 |
+
- ky
|
76 |
+
- tg
|
77 |
+
- ga
|
78 |
+
- mt
|
79 |
+
- my
|
80 |
+
- km
|
81 |
+
- tt
|
82 |
+
- so
|
83 |
+
- ku
|
84 |
+
- ps
|
85 |
+
- pa
|
86 |
+
- rw
|
87 |
+
- lo
|
88 |
+
- ha
|
89 |
+
- dv
|
90 |
+
- fy
|
91 |
+
- lb
|
92 |
+
- ckb
|
93 |
+
- mg
|
94 |
+
- gd
|
95 |
+
- am
|
96 |
+
- ug
|
97 |
+
- ht
|
98 |
+
- grc
|
99 |
+
- hmn
|
100 |
+
- sd
|
101 |
+
- jv
|
102 |
+
- mi
|
103 |
+
- tk
|
104 |
+
- ceb
|
105 |
+
- yi
|
106 |
+
- ba
|
107 |
+
- fo
|
108 |
+
- or
|
109 |
+
- xh
|
110 |
+
- su
|
111 |
+
- kl
|
112 |
+
- ny
|
113 |
+
- sm
|
114 |
+
- sn
|
115 |
+
- co
|
116 |
+
- zu
|
117 |
+
- ig
|
118 |
+
- yo
|
119 |
+
- pap
|
120 |
+
- st
|
121 |
+
- haw
|
122 |
+
- as
|
123 |
+
- oc
|
124 |
+
- cv
|
125 |
+
- lus
|
126 |
+
- tet
|
127 |
+
- gsw
|
128 |
+
- sah
|
129 |
+
- br
|
130 |
+
- rm
|
131 |
+
- sa
|
132 |
+
- bo
|
133 |
+
- om
|
134 |
+
- se
|
135 |
+
- ce
|
136 |
+
- cnh
|
137 |
+
- ilo
|
138 |
+
- hil
|
139 |
+
- udm
|
140 |
+
- os
|
141 |
+
- lg
|
142 |
+
- ti
|
143 |
+
- vec
|
144 |
+
- ts
|
145 |
+
- tyv
|
146 |
+
- kbd
|
147 |
+
- ee
|
148 |
+
- iba
|
149 |
+
- av
|
150 |
+
- kha
|
151 |
+
- to
|
152 |
+
- tn
|
153 |
+
- nso
|
154 |
+
- fj
|
155 |
+
- zza
|
156 |
+
- ak
|
157 |
+
- ada
|
158 |
+
- otq
|
159 |
+
- dz
|
160 |
+
- bua
|
161 |
+
- cfm
|
162 |
+
- ln
|
163 |
+
- chm
|
164 |
+
- gn
|
165 |
+
- krc
|
166 |
+
- wa
|
167 |
+
- hif
|
168 |
+
- yua
|
169 |
+
- srn
|
170 |
+
- war
|
171 |
+
- rom
|
172 |
+
- bik
|
173 |
+
- pam
|
174 |
+
- sg
|
175 |
+
- lu
|
176 |
+
- ady
|
177 |
+
- kbp
|
178 |
+
- syr
|
179 |
+
- ltg
|
180 |
+
- myv
|
181 |
+
- iso
|
182 |
+
- kac
|
183 |
+
- bho
|
184 |
+
- ay
|
185 |
+
- kum
|
186 |
+
- qu
|
187 |
+
- za
|
188 |
+
- pag
|
189 |
+
- ngu
|
190 |
+
- ve
|
191 |
+
- pck
|
192 |
+
- zap
|
193 |
+
- tyz
|
194 |
+
- hui
|
195 |
+
- bbc
|
196 |
+
- tzo
|
197 |
+
- tiv
|
198 |
+
- ksd
|
199 |
+
- gom
|
200 |
+
- min
|
201 |
+
- ang
|
202 |
+
- nhe
|
203 |
+
- bgp
|
204 |
+
- nzi
|
205 |
+
- nnb
|
206 |
+
- nv
|
207 |
+
- zxx
|
208 |
+
- bci
|
209 |
+
- kv
|
210 |
+
- new
|
211 |
+
- mps
|
212 |
+
- alt
|
213 |
+
- meu
|
214 |
+
- bew
|
215 |
+
- fon
|
216 |
+
- iu
|
217 |
+
- abt
|
218 |
+
- mgh
|
219 |
+
- mnw
|
220 |
+
- tvl
|
221 |
+
- dov
|
222 |
+
- tlh
|
223 |
+
- ho
|
224 |
+
- kw
|
225 |
+
- mrj
|
226 |
+
- meo
|
227 |
+
- crh
|
228 |
+
- mbt
|
229 |
+
- emp
|
230 |
+
- ace
|
231 |
+
- ium
|
232 |
+
- mam
|
233 |
+
- gym
|
234 |
+
- mai
|
235 |
+
- crs
|
236 |
+
- pon
|
237 |
+
- ubu
|
238 |
+
- fip
|
239 |
+
- quc
|
240 |
+
- gv
|
241 |
+
- kj
|
242 |
+
- btx
|
243 |
+
- ape
|
244 |
+
- chk
|
245 |
+
- rcf
|
246 |
+
- shn
|
247 |
+
- tzh
|
248 |
+
- mdf
|
249 |
+
- ppk
|
250 |
+
- ss
|
251 |
+
- gag
|
252 |
+
- cab
|
253 |
+
- kri
|
254 |
+
- seh
|
255 |
+
- ibb
|
256 |
+
- tbz
|
257 |
+
- bru
|
258 |
+
- enq
|
259 |
+
- ach
|
260 |
+
- cuk
|
261 |
+
- kmb
|
262 |
+
- wo
|
263 |
+
- kek
|
264 |
+
- qub
|
265 |
+
- tab
|
266 |
+
- bts
|
267 |
+
- kos
|
268 |
+
- rwo
|
269 |
+
- cak
|
270 |
+
- tuc
|
271 |
+
- bum
|
272 |
+
- cjk
|
273 |
+
- gil
|
274 |
+
- stq
|
275 |
+
- tsg
|
276 |
+
- quh
|
277 |
+
- mak
|
278 |
+
- arn
|
279 |
+
- ban
|
280 |
+
- jiv
|
281 |
+
- sja
|
282 |
+
- yap
|
283 |
+
- tcy
|
284 |
+
- toj
|
285 |
+
- twu
|
286 |
+
- xal
|
287 |
+
- amu
|
288 |
+
- rmc
|
289 |
+
- hus
|
290 |
+
- nia
|
291 |
+
- kjh
|
292 |
+
- bm
|
293 |
+
- guh
|
294 |
+
- mas
|
295 |
+
- acf
|
296 |
+
- dtp
|
297 |
+
- ksw
|
298 |
+
- bzj
|
299 |
+
- din
|
300 |
+
- zne
|
301 |
+
- mad
|
302 |
+
- msi
|
303 |
+
- mag
|
304 |
+
- mkn
|
305 |
+
- kg
|
306 |
+
- lhu
|
307 |
+
- ch
|
308 |
+
- qvi
|
309 |
+
- mh
|
310 |
+
- djk
|
311 |
+
- sus
|
312 |
+
- mfe
|
313 |
+
- srm
|
314 |
+
- dyu
|
315 |
+
- ctu
|
316 |
+
- gui
|
317 |
+
- pau
|
318 |
+
- inb
|
319 |
+
- bi
|
320 |
+
- mni
|
321 |
+
- guc
|
322 |
+
- jam
|
323 |
+
- wal
|
324 |
+
- jac
|
325 |
+
- bas
|
326 |
+
- gor
|
327 |
+
- skr
|
328 |
+
- nyu
|
329 |
+
- noa
|
330 |
+
- sda
|
331 |
+
- gub
|
332 |
+
- nog
|
333 |
+
- cni
|
334 |
+
- teo
|
335 |
+
- tdx
|
336 |
+
- sxn
|
337 |
+
- rki
|
338 |
+
- nr
|
339 |
+
- frp
|
340 |
+
- alz
|
341 |
+
- taj
|
342 |
+
- lrc
|
343 |
+
- cce
|
344 |
+
- rn
|
345 |
+
- jvn
|
346 |
+
- hvn
|
347 |
+
- nij
|
348 |
+
- dwr
|
349 |
+
- izz
|
350 |
+
- msm
|
351 |
+
- bus
|
352 |
+
- ktu
|
353 |
+
- chr
|
354 |
+
- maz
|
355 |
+
- tzj
|
356 |
+
- suz
|
357 |
+
- knj
|
358 |
+
- bim
|
359 |
+
- gvl
|
360 |
+
- bqc
|
361 |
+
- tca
|
362 |
+
- pis
|
363 |
+
- prk
|
364 |
+
- laj
|
365 |
+
- mel
|
366 |
+
- qxr
|
367 |
+
- niq
|
368 |
+
- ahk
|
369 |
+
- shp
|
370 |
+
- hne
|
371 |
+
- spp
|
372 |
+
- koi
|
373 |
+
- krj
|
374 |
+
- quf
|
375 |
+
- luz
|
376 |
+
- agr
|
377 |
+
- tsc
|
378 |
+
- mqy
|
379 |
+
- gof
|
380 |
+
- gbm
|
381 |
+
- miq
|
382 |
+
- dje
|
383 |
+
- awa
|
384 |
+
- bjj
|
385 |
+
- qvz
|
386 |
+
- sjp
|
387 |
+
- tll
|
388 |
+
- raj
|
389 |
+
- kjg
|
390 |
+
- bgz
|
391 |
+
- quy
|
392 |
+
- cbk
|
393 |
+
- akb
|
394 |
+
- oj
|
395 |
+
- ify
|
396 |
+
- mey
|
397 |
+
- ks
|
398 |
+
- cac
|
399 |
+
- brx
|
400 |
+
- qup
|
401 |
+
- syl
|
402 |
+
- jax
|
403 |
+
- ff
|
404 |
+
- ber
|
405 |
+
- tks
|
406 |
+
- trp
|
407 |
+
- mrw
|
408 |
+
- adh
|
409 |
+
- smt
|
410 |
+
- srr
|
411 |
+
- ffm
|
412 |
+
- qvc
|
413 |
+
- mtr
|
414 |
+
- ann
|
415 |
+
- kaa
|
416 |
+
- aa
|
417 |
+
- noe
|
418 |
+
- nut
|
419 |
+
- gyn
|
420 |
+
- kwi
|
421 |
+
- xmm
|
422 |
+
- msb
|
423 |
+
library_name: transformers
|
424 |
+
tags:
|
425 |
+
- text2text-generation
|
426 |
+
- text-generation-inference
|
427 |
+
datasets:
|
428 |
+
- allenai/MADLAD-400
|
429 |
+
pipeline_tag: translation
|
430 |
+
metrics:
|
431 |
+
- bleu
|
432 |
+
---
|
433 |
+
|
434 |
+
# Model Card for MADLAD-400-3B-CT2-int8
|
435 |
+
|
436 |
+
# Table of Contents
|
437 |
+
|
438 |
+
0. [TL;DR](#TL;DR)
|
439 |
+
1. [Model Details](#model-details)
|
440 |
+
2. [Usage](#usage)
|
441 |
+
3. [Uses](#uses)
|
442 |
+
4. [Bias, Risks, and Limitations](#bias-risks-and-limitations)
|
443 |
+
5. [Training Details](#training-details)
|
444 |
+
6. [Evaluation](#evaluation)
|
445 |
+
7. [Environmental Impact](#environmental-impact)
|
446 |
+
8. [Citation](#citation)
|
447 |
+
|
448 |
+
# TL;DR
|
449 |
+
|
450 |
+
MADLAD-400-3B-MT is a multilingual machine translation model based on the T5 architecture that was
|
451 |
+
trained on 1 trillion tokens covering over 450 languages using publicly available data.
|
452 |
+
It is competitive with models that are significantly larger.
|
453 |
+
|
454 |
+
**Disclaimer**: [Heng-Shiou Sheu](https://huggingface.co/Heng666), who was not involved in this research, converted
|
455 |
+
the original models to CTranslate2 optimized model and wrote the contents of this model card based on [google/madlad400-3b-mt](https://huggingface.co/google/madlad400-3b-mt).
|
456 |
+
|
457 |
+
# Model Details
|
458 |
+
|
459 |
+
## Model Description
|
460 |
+
|
461 |
+
- **Model type:** Language model
|
462 |
+
- **Language(s) (NLP):** Multilingual (400+ languages)
|
463 |
+
- **License:** Apache 2.0
|
464 |
+
- **Related Models:** [All MADLAD-400 Checkpoints](https://huggingface.co/models?search=madlad)
|
465 |
+
- **Original Checkpoints:** [All Original MADLAD-400 Checkpoints](https://github.com/google-research/google-research/tree/master/madlad_400)
|
466 |
+
- **Resources for more information:**
|
467 |
+
- [Research paper](https://arxiv.org/abs/2309.04662)
|
468 |
+
- [GitHub Repo](https://github.com/google-research/t5x)
|
469 |
+
- [Hugging Face MADLAD-400 Docs (Similar to T5) ](https://huggingface.co/docs/transformers/model_doc/MADLAD-400) - [Pending PR](https://github.com/huggingface/transformers/pull/27471)
|
470 |
+
|
471 |
+
# Usage
|
472 |
+
|
473 |
+
Find below some example scripts on how to use the model:
|
474 |
+
|
475 |
+
## Running the model on a CPU or GPU
|
476 |
+
|
477 |
+
First, install the CTranslate2 packages that are required:
|
478 |
+
|
479 |
+
`pip install ctranslate2 sentencepiece`
|
480 |
+
|
481 |
+
```python
|
482 |
+
import ctranslate2
|
483 |
+
from sentencepiece import SentencePieceProcessor
|
484 |
+
from huggingface_hub import snapshot_download
|
485 |
+
|
486 |
+
model_name = "Heng666/madlad400-3b-ct2-int8"
|
487 |
+
model_path = snapshot_download(model_name)
|
488 |
+
|
489 |
+
tokenizer = SentencePieceProcessor()
|
490 |
+
tokenizer.load(f"{model_path}/sentencepiece.model")
|
491 |
+
translator = ctranslate2.Translator(model_path)
|
492 |
+
|
493 |
+
input_text = "I love pizza!"
|
494 |
+
input_tokens = tokenizer.encode(f"<2{target_language}> {input_text}", out_type=str)
|
495 |
+
results = translator.translate_batch(
|
496 |
+
[input_tokens],
|
497 |
+
batch_type="tokens",
|
498 |
+
max_batch_size=1024,
|
499 |
+
beam_size=1,
|
500 |
+
no_repeat_ngram_size=1,
|
501 |
+
repetition_penalty=2,
|
502 |
+
)
|
503 |
+
translated_sentence = tokenizer.decode(results[0].hypotheses[0])
|
504 |
+
print(translated_sentence)
|
505 |
+
# Eu adoro pizza!
|
506 |
+
```
|
507 |
+
|
508 |
+
|
509 |
+
# Uses
|
510 |
+
|
511 |
+
## Direct Use and Downstream Use
|
512 |
+
|
513 |
+
> Primary intended uses: Machine Translation and multilingual NLP tasks on over 400 languages.
|
514 |
+
> Primary intended users: Research community.
|
515 |
+
|
516 |
+
## Out-of-Scope Use
|
517 |
+
|
518 |
+
> These models are trained on general domain data and are therefore not meant to
|
519 |
+
> work on domain-specific models out-of-the box. Moreover, these research models have not been assessed
|
520 |
+
> for production usecases.
|
521 |
+
|
522 |
+
# Bias, Risks, and Limitations
|
523 |
+
|
524 |
+
> We note that we evaluate on only 204 of the languages supported by these models and on machine translation
|
525 |
+
> and few-shot machine translation tasks. Users must consider use of this model carefully for their own
|
526 |
+
> usecase.
|
527 |
+
|
528 |
+
## Ethical considerations and risks
|
529 |
+
|
530 |
+
> We trained these models with MADLAD-400 and publicly available data to create baseline models that
|
531 |
+
> support NLP for over 400 languages, with a focus on languages underrepresented in large-scale corpora.
|
532 |
+
> Given that these models were trained with web-crawled datasets that may contain sensitive, offensive or
|
533 |
+
> otherwise low-quality content despite extensive preprocessing, it is still possible that these issues to the
|
534 |
+
> underlying training data may cause differences in model performance and toxic (or otherwise problematic)
|
535 |
+
> output for certain domains. Moreover, large models are dual use technologies that have specific risks
|
536 |
+
> associated with their use and development. We point the reader to surveys such as those written by
|
537 |
+
> Weidinger et al. or Bommasani et al. for a more detailed discussion of these risks, and to Liebling
|
538 |
+
> et al. for a thorough discussion of the risks of machine translation systems.
|
539 |
+
|
540 |
+
## Known Limitations
|
541 |
+
|
542 |
+
More information needed
|
543 |
+
|
544 |
+
## Sensitive Use:
|
545 |
+
|
546 |
+
More information needed
|
547 |
+
|
548 |
+
# Training Details
|
549 |
+
|
550 |
+
> We train models of various sizes: a 3B, 32-layer parameter model,
|
551 |
+
> a 7.2B 48-layer parameter model and a 10.7B 32-layer parameter model.
|
552 |
+
> We share all parameters of the model across language pairs,
|
553 |
+
> and use a Sentence Piece Model with 256k tokens shared on both the encoder and decoder
|
554 |
+
> side. Each input sentence has a <2xx> token prepended to the source sentence to indicate the target
|
555 |
+
> language.
|
556 |
+
|
557 |
+
See the [research paper](https://arxiv.org/pdf/2309.04662.pdf) for further details.
|
558 |
+
|
559 |
+
## Training Data
|
560 |
+
|
561 |
+
> For both the machine translation and language model, MADLAD-400 is used. For the machine translation
|
562 |
+
> model, a combination of parallel datasources covering 157 languages is also used. Further details are
|
563 |
+
> described in the [paper](https://arxiv.org/pdf/2309.04662.pdf).
|
564 |
+
|
565 |
+
## Training Procedure
|
566 |
+
|
567 |
+
See the [research paper](https://arxiv.org/pdf/2309.04662.pdf) for further details.
|
568 |
+
|
569 |
+
# Evaluation
|
570 |
+
|
571 |
+
## Testing Data, Factors & Metrics
|
572 |
+
|
573 |
+
> For evaluation, we used WMT, NTREX, Flores-200 and Gatones datasets as described in Section 4.3 in the [paper](https://arxiv.org/pdf/2309.04662.pdf).
|
574 |
+
|
575 |
+
> The translation quality of this model varies based on language, as seen in the paper, and likely varies on
|
576 |
+
> domain, though we have not assessed this.
|
577 |
+
|
578 |
+
## Results
|
579 |
+
|
580 |
+
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64b7f632037d6452a321fa15/EzsMD1AwCuFH0S0DeD-n8.png)
|
581 |
+
|
582 |
+
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64b7f632037d6452a321fa15/CJ5zCUVy7vTU76Lc8NZcK.png)
|
583 |
+
|
584 |
+
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64b7f632037d6452a321fa15/NK0S-yVeWuhKoidpLYh3m.png)
|
585 |
+
|
586 |
+
See the [research paper](https://arxiv.org/pdf/2309.04662.pdf) for further details.
|
587 |
+
|
588 |
+
# Environmental Impact
|
589 |
+
|
590 |
+
More information needed
|
591 |
+
|
592 |
+
# Citation
|
593 |
+
|
594 |
+
**BibTeX:**
|
595 |
+
|
596 |
+
```bibtex
|
597 |
+
@misc{kudugunta2023madlad400,
|
598 |
+
title={MADLAD-400: A Multilingual And Document-Level Large Audited Dataset},
|
599 |
+
author={Sneha Kudugunta and Isaac Caswell and Biao Zhang and Xavier Garcia and Christopher A. Choquette-Choo and Katherine Lee and Derrick Xin and Aditya Kusupati and Romi Stella and Ankur Bapna and Orhan Firat},
|
600 |
+
year={2023},
|
601 |
+
eprint={2309.04662},
|
602 |
+
archivePrefix={arXiv},
|
603 |
+
primaryClass={cs.CL}
|
604 |
+
}
|
605 |
+
```
|