File size: 15,339 Bytes
f514f40 e34a465 f514f40 e34a465 f514f40 fba413c e34a465 fba413c e34a465 fba413c e34a465 21be054 fba413c 21be054 e34a465 21be054 e34a465 f514f40 e34a465 f514f40 e34a465 f514f40 e34a465 f514f40 e34a465 f514f40 e34a465 f514f40 e34a465 b0707cb e34a465 fba413c e34a465 b0707cb e34a465 fba413c e34a465 fba413c e34a465 f514f40 e34a465 f514f40 e34a465 f514f40 e34a465 f514f40 e34a465 f514f40 e34a465 f514f40 e34a465 f514f40 fb6f33c e34a465 f514f40 e34a465 f514f40 e34a465 f514f40 e34a465 f514f40 e34a465 f514f40 ac219c3 e34a465 f514f40 e34a465 f514f40 e34a465 2955c59 e34a465 2955c59 f514f40 e8f04b1 e34a465 f514f40 e34a465 e8f04b1 7b66718 e8f04b1 f514f40 134c3f4 b0707cb e8f04b1 f514f40 134c3f4 b0707cb e8f04b1 f514f40 134c3f4 b0707cb e8f04b1 f514f40 e34a465 f514f40 134c3f4 b0707cb e8f04b1 f514f40 e34a465 b0707cb e34a465 a4a0af8 b0707cb 066b297 b0707cb e34a465 b0707cb e34a465 b0707cb e34a465 a4a0af8 f514f40 e34a465 f514f40 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 |
from typing import Dict, Any, List
import ast
import tarfile
import torch
import requests
import numpy as np
from ast import AsyncFunctionDef, ClassDef, FunctionDef, Module
from transformers import Pipeline
from tqdm.auto import tqdm
def extract_code_and_docs(text: str):
"""
The method for extracting codes and docs in text.
:param text: python file.
:return: codes and docs set.
"""
code_set = set()
docs_set = set()
root = ast.parse(text)
for node in ast.walk(root):
if not isinstance(node, (AsyncFunctionDef, FunctionDef, ClassDef, Module)):
continue
docs = ast.get_docstring(node)
node_without_docs = node
if docs is not None:
docs_set.add(docs)
# Remove docstrings from the node
node_without_docs.body = node_without_docs.body[1:]
if isinstance(node, (AsyncFunctionDef, FunctionDef)):
code_set.add(ast.unparse(node_without_docs))
return code_set, docs_set
def extract_readmes(file_content):
"""
The method for extracting readmes.
:param lines: readmes.
:return: readme sentences.
"""
readmes_set = set()
lines = file_content.split('\n')
for line in lines:
line = line.replace("\n", "").strip()
readmes_set.add(line)
return readmes_set
def extract_requirements(file_content):
"""
The method for extracting requirements.
:param lines: requirements.
:return: requirement libraries.
"""
requirements_set = set()
lines = file_content.split('\n')
for line in lines:
line = line.replace("\n", "").strip()
try:
if " == " in line:
splitLine = line.split(" == ")
else:
splitLine = line.split("==")
requirements_set.add(splitLine[0])
except:
pass
return requirements_set
def get_metadata(repo_name, headers=None):
"""
The method for getting metadata of repository from github_api.
:param repo_name: repository name.
:param headers: request headers.
:return: response json.
"""
api_url = f"https://api.github.com/repos/{repo_name}"
tqdm.write(f"[+] Getting metadata for {repo_name}")
try:
response = requests.get(api_url, headers=headers)
response.raise_for_status()
return response.json()
except requests.exceptions.HTTPError as e:
tqdm.write(f"[-] Failed to retrieve metadata from {repo_name}: {e}")
return {}
def extract_information(repos, headers=None):
"""
The method for extracting repositories information.
:param repos: repositories.
:param headers: request header.
:return: a list for representing the information of each repository.
"""
extracted_infos = []
for repo_name in tqdm(repos, disable=len(repos) <= 1):
# 1. Extracting metadata.
metadata = get_metadata(repo_name, headers=headers)
repo_info = {
"name": repo_name,
"codes": set(),
"docs": set(),
"requirements": set(),
"readmes": set(),
"topics": [],
"license": "",
"stars": metadata.get("stargazers_count"),
}
if metadata.get("topics"):
repo_info["topics"] = metadata["topics"]
if metadata.get("license"):
repo_info["license"] = metadata["license"]["spdx_id"]
# Download repo tarball bytes ---- Download repository.
download_url = f"https://api.github.com/repos/{repo_name}/tarball"
tqdm.write(f"[+] Downloading {repo_name}")
try:
response = requests.get(download_url, headers=headers, stream=True)
response.raise_for_status()
except requests.exceptions.HTTPError as e:
tqdm.write(f"[-] Failed to download {repo_name}: {e}")
continue
# Extract repository files and parse them
tqdm.write(f"[+] Extracting {repo_name} info")
with tarfile.open(fileobj=response.raw, mode="r|gz") as tar:
for member in tar:
# 2. Extracting codes and docs.
if member.name.endswith(".py") and member.isfile():
try:
file_content = tar.extractfile(member).read().decode("utf-8")
# extract_code_and_docs
code_set, docs_set = extract_code_and_docs(file_content)
repo_info["codes"].update(code_set)
repo_info["docs"].update(docs_set)
except UnicodeDecodeError as e:
tqdm.write(
f"[-] UnicodeDecodeError in {member.name}, skipping: \n{e}"
)
except SyntaxError as e:
tqdm.write(f"[-] SyntaxError in {member.name}, skipping: \n{e}")
# 3. Extracting readme.
elif (member.name.endswith("README.md") or member.name.endswith("README.rst")) and member.isfile():
try:
file_content = tar.extractfile(member).read().decode("utf-8")
# extract readme
readmes_set = extract_readmes(file_content)
repo_info["readmes"].update(readmes_set)
except UnicodeDecodeError as e:
tqdm.write(
f"[-] UnicodeDecodeError in {member.name}, skipping: \n{e}"
)
except SyntaxError as e:
tqdm.write(f"[-] SyntaxError in {member.name}, skipping: \n{e}")
# 4. Extracting requirements.
elif member.name.endswith("requirements.txt") and member.isfile():
try:
file_content = tar.extractfile(member).read().decode("utf-8")
# extract readme
requirements_set = extract_requirements(file_content)
repo_info["requirements"].update(requirements_set)
except UnicodeDecodeError as e:
tqdm.write(
f"[-] UnicodeDecodeError in {member.name}, skipping: \n{e}"
)
except SyntaxError as e:
tqdm.write(f"[-] SyntaxError in {member.name}, skipping: \n{e}")
extracted_infos.append(repo_info)
return extracted_infos
class RepoPipeline(Pipeline):
"""
A custom pipeline for generating series of embeddings of a repository.
"""
def __init__(self, github_token=None, *args, **kwargs):
"""
The initial method for pipeline.
:param github_token: github_token
:param args: args
:param kwargs: kwargs
"""
super().__init__(*args, **kwargs)
# Getting github token
self.github_token = github_token
if self.github_token:
print("[+] GitHub token set!")
else:
print(
"[*] Please set GitHub token to avoid unexpected errors. \n"
"For more info, see: "
"https://docs.github.com/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token"
)
def _sanitize_parameters(self, **pipeline_parameters):
"""
The method for splitting parameters.
:param pipeline_parameters: parameters
:return: different parameters of different periods.
"""
# The parameters of "preprocess" period.
preprocess_parameters = {}
if "github_token" in pipeline_parameters:
preprocess_parameters["github_token"] = pipeline_parameters["github_token"]
# The parameters of "forward" period.
forward_parameters = {}
if "max_length" in pipeline_parameters:
forward_parameters["max_length"] = pipeline_parameters["max_length"]
# The parameters of "postprocess" period.
postprocess_parameters = {}
return preprocess_parameters, forward_parameters, postprocess_parameters
def preprocess(self, input_: Any, github_token=None) -> List:
"""
The method for "preprocess" period.
:param input_: the input.
:param github_token: github_token.
:return: a list about repository information.
"""
# Making input to list format.
if isinstance(input_, str):
input_ = [input_]
# Building headers.
headers = {"Accept": "application/vnd.github+json"}
token = github_token or self.github_token
if token:
headers["Authorization"] = f"Bearer {token}"
# Getting repositories' information: input_ means series of repositories (can be only one repository).
extracted_infos = extract_information(input_, headers=headers)
return extracted_infos
def encode(self, text, max_length):
"""
The method for encoding the text to embedding by using UniXcoder.
:param text: text.
:param max_length: the max length.
:return: the embedding of text.
"""
assert max_length < 1024
# Getting the tokenizer.
tokenizer = self.tokenizer
tokens = (
[tokenizer.cls_token, "<encoder-only>", tokenizer.sep_token]
+ tokenizer.tokenize(text)[: max_length - 4]
+ [tokenizer.sep_token]
)
tokens_id = tokenizer.convert_tokens_to_ids(tokens)
source_ids = torch.tensor([tokens_id]).to(self.device)
token_embeddings = self.model(source_ids)[0]
# Getting the text embedding.
sentence_embeddings = token_embeddings.mean(dim=1)
return sentence_embeddings
def generate_embeddings(self, text_sets, max_length):
"""
The method for generating embeddings of a text set.
:param text_sets: text set.
:param max_length: max length.
:return: the embeddings of text set.
"""
assert max_length < 1024
# Concat the embeddings of each sentence/text in vertical dimension.
return torch.zeros((1, 768), device=self.device) \
if not text_sets \
else torch.cat([self.encode(text, max_length) for text in text_sets], dim=0)
def _forward(self, extracted_infos: List, max_length=512, st_progress=None) -> List:
"""
The method for "forward" period.
:param extracted_infos: the information of repositories.
:param max_length: max length.
:return: the output of this pipeline.
"""
model_outputs = []
# The number of repository.
num_texts = sum(
len(x["codes"]) + len(x["docs"]) + len(x["requirements"]) + len(x["readmes"]) for x in extracted_infos)
with tqdm(total=num_texts) as progress_bar:
# For each repository
for repo_info in extracted_infos:
repo_name = repo_info["name"]
info = {
"name": repo_name,
"topics": repo_info["topics"],
"license": repo_info["license"],
"stars": repo_info["stars"],
}
progress_bar.set_description(f"Processing {repo_name}")
# Code embeddings
tqdm.write(f"[*] Generating code embeddings for {repo_name}")
code_embeddings = self.generate_embeddings(repo_info["codes"], max_length)
info["code_embeddings"] = code_embeddings.cpu().numpy()
info["mean_code_embedding"] = torch.mean(code_embeddings, dim=0, keepdim=True).cpu().numpy()
progress_bar.update(len(repo_info["codes"]))
if st_progress:
st_progress.progress(progress_bar.n / progress_bar.total)
# Doc embeddings
tqdm.write(f"[*] Generating doc embeddings for {repo_name}")
doc_embeddings = self.generate_embeddings(repo_info["docs"], max_length)
info["doc_embeddings"] = doc_embeddings.cpu().numpy()
info["mean_doc_embedding"] = torch.mean(doc_embeddings, dim=0, keepdim=True).cpu().numpy()
progress_bar.update(len(repo_info["docs"]))
if st_progress:
st_progress.progress(progress_bar.n / progress_bar.total)
# Requirement embeddings
tqdm.write(f"[*] Generating requirement embeddings for {repo_name}")
requirement_embeddings = self.generate_embeddings(repo_info["requirements"], max_length)
info["requirement_embeddings"] = requirement_embeddings.cpu().numpy()
info["mean_requirement_embedding"] = torch.mean(requirement_embeddings, dim=0,
keepdim=True).cpu().numpy()
progress_bar.update(len(repo_info["requirements"]))
if st_progress:
st_progress.progress(progress_bar.n / progress_bar.total)
# Readme embeddings
tqdm.write(f"[*] Generating readme embeddings for {repo_name}")
readme_embeddings = self.generate_embeddings(repo_info["readmes"], max_length)
info["readme_embeddings"] = readme_embeddings.cpu().numpy()
info["mean_readme_embedding"] = torch.mean(readme_embeddings, dim=0, keepdim=True).cpu().numpy()
progress_bar.update(len(repo_info["readmes"]))
if st_progress:
st_progress.progress(progress_bar.n / progress_bar.total)
# Repo-level mean embedding
info["mean_repo_embedding"] = np.concatenate([
info["mean_code_embedding"],
info["mean_doc_embedding"],
info["mean_requirement_embedding"],
info["mean_readme_embedding"]
], axis=0).reshape(1, -1)
info["code_embeddings_shape"] = info["code_embeddings"].shape
info["mean_code_embedding_shape"] = info["mean_code_embedding"].shape
info["doc_embeddings_shape"] = info["doc_embeddings"].shape
info["mean_doc_embedding_shape"] = info["mean_doc_embedding"].shape
info["requirement_embeddings_shape"] = info["requirement_embeddings"].shape
info["mean_requirement_embedding_shape"] = info["mean_requirement_embedding"].shape
info["readme_embeddings_shape"] = info["readme_embeddings"].shape
info["mean_readme_embedding_shape"] = info["mean_readme_embedding"].shape
info["mean_repo_embedding_shape"] = info["mean_repo_embedding"].shape
model_outputs.append(info)
return model_outputs
def postprocess(self, model_outputs: List, **postprocess_parameters: Dict) -> List:
"""
The method for "postprocess" period.
:param model_outputs: the output of this pipeline.
:param postprocess_parameters: the parameters of "postprocess" period.
:return: model output.
"""
return model_outputs
|