Henry65 commited on
Commit
bf37ebb
1 Parent(s): cdbc2dc

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +26 -20
README.md CHANGED
@@ -34,40 +34,46 @@ The model used by **RepoSim4Py** is **UniXcoder** fine-tuned on [code search tas
34
 
35
  ## Uses
36
 
37
- Below is an example of how to use the RepoSim pipeline to easily generate embeddings for GitHub Python repositories.
38
 
39
  First, initialise the pipeline:
40
  ```python
41
  from transformers import pipeline
42
 
43
- model = pipeline(model="Lazyhope/RepoSim", trust_remote_code=True)
44
  ```
45
  Then specify one (or multiple repositories in a tuple) as input and get the result as a list of dictionaries:
46
  ```python
47
  repo_infos = model("lazyhope/python-hello-world")
48
  print(repo_infos)
49
  ```
50
- Output (Long tensor outputs are omitted):
51
  ```python
52
  [{'name': 'lazyhope/python-hello-world',
53
  'topics': [],
54
  'license': 'MIT',
55
  'stars': 0,
56
- 'code_embeddings': [["def main():\n print('Hello World!')",
57
- [-2.0755109786987305,
58
- 2.813878297805786,
59
- 2.352170467376709, ...]]],
60
- 'mean_code_embedding': [-2.0755109786987305,
61
- 2.813878297805786,
62
- 2.352170467376709, ...],
63
- 'doc_embeddings': [['Prints hello world',
64
- [-2.3749449253082275,
65
- 0.5409570336341858,
66
- 2.2958014011383057, ...]]],
67
- 'mean_doc_embedding': [-2.3749449253082275,
68
- 0.5409570336341858,
69
- 2.2958014011383057, ...]}]
 
 
 
 
 
70
  ```
 
71
 
72
  ## Training Details
73
 
@@ -75,8 +81,8 @@ Please follow the original [UniXcoder](https://github.com/microsoft/CodeBERT/tre
75
 
76
  ## Evaluation
77
 
78
- We used the [awesome-python](https://github.com/vinta/awesome-python) list which contains over 500 Python repositories categorized in different topics, in order to label similar repositories.
79
- The evaluation metrics and results can be found in the RepoSim repository, under the [notebooks](https://github.com/RepoAnalysis/RepoSim/tree/main/notebooks) folder.
80
 
81
  ## Acknowledgements
82
  Many thanks to authors of the UniXcoder model and the AdvTest dataset, as well as the awesome python list for providing a useful baseline.
@@ -85,5 +91,5 @@ Many thanks to authors of the UniXcoder model and the AdvTest dataset, as well a
85
  - **awesome-python** (https://github.com/vinta/awesome-python)
86
 
87
  ## Authors
88
- - **Zihao Li** (https://github.com/lazyhope)
89
  - **Rosa Filgueira** (https://www.rosafilgueira.com)
 
34
 
35
  ## Uses
36
 
37
+ Below is an example of how to use the RepoSim4Py pipeline to easily generate embeddings for GitHub Python repositories.
38
 
39
  First, initialise the pipeline:
40
  ```python
41
  from transformers import pipeline
42
 
43
+ model = pipeline(model="Henry65/RepoSim4Py", trust_remote_code=True)
44
  ```
45
  Then specify one (or multiple repositories in a tuple) as input and get the result as a list of dictionaries:
46
  ```python
47
  repo_infos = model("lazyhope/python-hello-world")
48
  print(repo_infos)
49
  ```
50
+ Output (Long numpy outputs are omitted):
51
  ```python
52
  [{'name': 'lazyhope/python-hello-world',
53
  'topics': [],
54
  'license': 'MIT',
55
  'stars': 0,
56
+ 'code_embeddings': array([[-2.07551336e+00, 2.81387949e+00, 2.35216689e+00, ...]], dtype=float32),
57
+ 'mean_code_embedding': array([[-2.07551336e+00, 2.81387949e+00, 2.35216689e+00, ...]], dtype=float32),
58
+ 'doc_embeddings': array([[-2.37494540e+00, 5.40957630e-01, 2.29580235e+00, ...]], dtype=float32),
59
+ 'mean_doc_embedding': array([[-2.37494540e+00, 5.40957630e-01, 2.29580235e+00, ...]], dtype=float32),
60
+ 'requirement_embeddings': array([[0., 0., 0., ...]], dtype=float32),
61
+ 'mean_requirement_embedding': array([[0., 0., 0., ...]], dtype=float32),
62
+ 'readme_embeddings': array([[-2.1671042 , 2.8404987 , 1.4761417 , ...]], dtype=float32),
63
+ 'mean_readme_embedding': array([[-1.91171765e+00, 1.65386486e+00, 9.49612021e-01, ...]], dtype=float32),
64
+ 'mean_repo_embedding': array([[-2.0755134, 2.8138795, 2.352167 , ...]], dtype=float32),
65
+ 'code_embeddings_shape': (1, 768)
66
+ 'mean_code_embedding_shape': (1, 768)
67
+ 'doc_embeddings_shape': (1, 768)
68
+ 'mean_doc_embedding_shape': (1, 768)
69
+ 'requirement_embeddings_shape': (1, 768)
70
+ 'mean_requirement_embedding_shape': (1, 768)
71
+ 'readme_embeddings_shape': (3, 768)
72
+ 'mean_readme_embedding_shape': (1, 768)
73
+ 'mean_repo_embedding_shape': (1, 3072)
74
+ }]
75
  ```
76
+ More specific information please refer to [Example.py](https://github.com/RepoMining/RepoSim4Py/blob/main/Script/Example.py). Note that "github_token" is unnecessary.
77
 
78
  ## Training Details
79
 
 
81
 
82
  ## Evaluation
83
 
84
+ We used the [awesome-python](https://github.com/vinta/awesome-python) list which contains over 400 Python repositories categorized in different topics, in order to label similar repositories.
85
+ The evaluation metrics and results can be found in the RepoSim4Py repository, under the [Embedding](https://github.com/RepoMining/RepoSim4Py/tree/main/Embedding) folder.
86
 
87
  ## Acknowledgements
88
  Many thanks to authors of the UniXcoder model and the AdvTest dataset, as well as the awesome python list for providing a useful baseline.
 
91
  - **awesome-python** (https://github.com/vinta/awesome-python)
92
 
93
  ## Authors
94
+ - **Honglin Zhang** (https://github.com/liaomu0926)
95
  - **Rosa Filgueira** (https://www.rosafilgueira.com)