File size: 29,279 Bytes
736c789
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42e38ee
736c789
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
import os
import sys
import gc
import traceback
import logging

logger = logging.getLogger(__name__)

from functools import lru_cache
from time import time as ttime
from torch import Tensor
import faiss
import librosa
import numpy as np
import parselmouth
import pyworld
import torch.nn.functional as F
from scipy import signal
from tqdm import tqdm

import random
now_dir = os.getcwd()
sys.path.append(now_dir)
import re
from functools import partial
bh, ah = signal.butter(N=5, Wn=48, btype="high", fs=16000)

input_audio_path2wav = {}
import torchcrepe  # Fork Feature. Crepe algo for training and preprocess
from torchfcpe import spawn_bundled_infer_model
import torch
from lib.infer_libs.rmvpe import RMVPE
from lib.infer_libs.fcpe import FCPE

@lru_cache
def cache_harvest_f0(input_audio_path, fs, f0max, f0min, frame_period):
    audio = input_audio_path2wav[input_audio_path]
    f0, t = pyworld.harvest(
        audio,
        fs=fs,
        f0_ceil=f0max,
        f0_floor=f0min,
        frame_period=frame_period,
    )
    f0 = pyworld.stonemask(audio, f0, t, fs)
    return f0


def change_rms(data1, sr1, data2, sr2, rate):  # 1是输入音频,2是输出音频,rate是2的占比
    # print(data1.max(),data2.max())
    rms1 = librosa.feature.rms(
        y=data1, frame_length=sr1 // 2 * 2, hop_length=sr1 // 2
    )  # 每半秒一个点
    rms2 = librosa.feature.rms(y=data2, frame_length=sr2 // 2 * 2, hop_length=sr2 // 2)
    rms1 = torch.from_numpy(rms1)
    rms1 = F.interpolate(
        rms1.unsqueeze(0), size=data2.shape[0], mode="linear"
    ).squeeze()
    rms2 = torch.from_numpy(rms2)
    rms2 = F.interpolate(
        rms2.unsqueeze(0), size=data2.shape[0], mode="linear"
    ).squeeze()
    rms2 = torch.max(rms2, torch.zeros_like(rms2) + 1e-6)
    data2 *= (
        torch.pow(rms1, torch.tensor(1 - rate))
        * torch.pow(rms2, torch.tensor(rate - 1))
    ).numpy()
    return data2


class Pipeline(object):
    def __init__(self, tgt_sr, config):
        self.x_pad, self.x_query, self.x_center, self.x_max, self.is_half = (
            config.x_pad,
            config.x_query,
            config.x_center,
            config.x_max,
            config.is_half,
        )
        self.sr = 16000  # hubert输入采样率
        self.window = 160  # 每帧点数
        self.t_pad = self.sr * self.x_pad  # 每条前后pad时间
        self.t_pad_tgt = tgt_sr * self.x_pad
        self.t_pad2 = self.t_pad * 2
        self.t_query = self.sr * self.x_query  # 查询切点前后查询时间
        self.t_center = self.sr * self.x_center  # 查询切点位置
        self.t_max = self.sr * self.x_max  # 免查询时长阈值
        self.device = config.device
        self.model_rmvpe = RMVPE(os.environ["rmvpe_model_path"], is_half=self.is_half, device=self.device)

        self.note_dict = [
            65.41, 69.30, 73.42, 77.78, 82.41, 87.31,
            92.50, 98.00, 103.83, 110.00, 116.54, 123.47,
            130.81, 138.59, 146.83, 155.56, 164.81, 174.61,
            185.00, 196.00, 207.65, 220.00, 233.08, 246.94,
            261.63, 277.18, 293.66, 311.13, 329.63, 349.23,
            369.99, 392.00, 415.30, 440.00, 466.16, 493.88,
            523.25, 554.37, 587.33, 622.25, 659.25, 698.46,
            739.99, 783.99, 830.61, 880.00, 932.33, 987.77,
            1046.50, 1108.73, 1174.66, 1244.51, 1318.51, 1396.91,
            1479.98, 1567.98, 1661.22, 1760.00, 1864.66, 1975.53,
            2093.00, 2217.46, 2349.32, 2489.02, 2637.02, 2793.83,
            2959.96, 3135.96, 3322.44, 3520.00, 3729.31, 3951.07
        ]

    # Fork Feature: Get the best torch device to use for f0 algorithms that require a torch device. Will return the type (torch.device)
    def get_optimal_torch_device(self, index: int = 0) -> torch.device:
        if torch.cuda.is_available():
            return torch.device(
                f"cuda:{index % torch.cuda.device_count()}"
            )  # Very fast
        elif torch.backends.mps.is_available():
            return torch.device("mps")
        return torch.device("cpu")

    # Fork Feature: Compute f0 with the crepe method
    def get_f0_crepe_computation(
        self,
        x,
        f0_min,
        f0_max,
        p_len,
        *args,  # 512 before. Hop length changes the speed that the voice jumps to a different dramatic pitch. Lower hop lengths means more pitch accuracy but longer inference time.
        **kwargs,  # Either use crepe-tiny "tiny" or crepe "full". Default is full
    ):
        x = x.astype(
            np.float32
        )  # fixes the F.conv2D exception. We needed to convert double to float.
        x /= np.quantile(np.abs(x), 0.999)
        torch_device = self.get_optimal_torch_device()
        audio = torch.from_numpy(x).to(torch_device, copy=True)
        audio = torch.unsqueeze(audio, dim=0)
        if audio.ndim == 2 and audio.shape[0] > 1:
            audio = torch.mean(audio, dim=0, keepdim=True).detach()
        audio = audio.detach()
        hop_length = kwargs.get('crepe_hop_length', 160)
        model = kwargs.get('model', 'full') 
        print("Initiating prediction with a crepe_hop_length of: " + str(hop_length))
        pitch: Tensor = torchcrepe.predict(
            audio,
            self.sr,
            hop_length,
            f0_min,
            f0_max,
            model,
            batch_size=hop_length * 2,
            device=torch_device,
            pad=True,
        )
        p_len = p_len or x.shape[0] // hop_length
        # Resize the pitch for final f0
        source = np.array(pitch.squeeze(0).cpu().float().numpy())
        source[source < 0.001] = np.nan
        target = np.interp(
            np.arange(0, len(source) * p_len, len(source)) / p_len,
            np.arange(0, len(source)),
            source,
        )
        f0 = np.nan_to_num(target)
        return f0  # Resized f0
    
    def get_f0_official_crepe_computation(
        self,
        x,
        f0_min,
        f0_max,
        *args,
        **kwargs
    ):
        # Pick a batch size that doesn't cause memory errors on your gpu
        batch_size = 512
        # Compute pitch using first gpu
        audio = torch.tensor(np.copy(x))[None].float()
        model = kwargs.get('model', 'full')
        f0, pd = torchcrepe.predict(
            audio,
            self.sr,
            self.window,
            f0_min,
            f0_max,
            model,
            batch_size=batch_size,
            device=self.device,
            return_periodicity=True,
        )
        pd = torchcrepe.filter.median(pd, 3)
        f0 = torchcrepe.filter.mean(f0, 3)
        f0[pd < 0.1] = 0
        f0 = f0[0].cpu().numpy()
        return f0

    # Fork Feature: Compute pYIN f0 method
    def get_f0_pyin_computation(self, x, f0_min, f0_max):
        y, sr = librosa.load(x, sr=self.sr, mono=True)
        f0, _, _ = librosa.pyin(y, fmin=f0_min, fmax=f0_max, sr=self.sr)
        f0 = f0[1:]  # Get rid of extra first frame
        return f0

    def get_rmvpe(self, x, *args, **kwargs):
        if not hasattr(self, "model_rmvpe"):
            from lib.infer.infer_libs.rmvpe import RMVPE
            
            logger.info(
                f"Loading rmvpe model, {os.environ['rmvpe_model_path']}"
            )
            self.model_rmvpe = RMVPE(
                os.environ["rmvpe_model_path"],
                is_half=self.is_half,
                device=self.device,
            )
        f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03)

        if "privateuseone" in str(self.device):  # clean ortruntime memory
                del self.model_rmvpe.model
                del self.model_rmvpe
                logger.info("Cleaning ortruntime memory")
            
        return f0
    

    def get_pitch_dependant_rmvpe(self, x, f0_min=1, f0_max=40000, *args, **kwargs):
        if not hasattr(self, "model_rmvpe"):
            from lib.infer.infer_libs.rmvpe import RMVPE
            
            logger.info(
                f"Loading rmvpe model, {os.environ['rmvpe_model_path']}"
            )
            self.model_rmvpe = RMVPE(
                os.environ["rmvpe_model_path"],
                is_half=self.is_half,
                device=self.device,
            )
        f0 = self.model_rmvpe.infer_from_audio_with_pitch(x, thred=0.03, f0_min=f0_min, f0_max=f0_max)   
        if "privateuseone" in str(self.device):  # clean ortruntime memory
                del self.model_rmvpe.model
                del self.model_rmvpe
                logger.info("Cleaning ortruntime memory")
            
        return f0
        
    def get_fcpe(self, x, f0_min, f0_max, p_len, *args, **kwargs):
        self.model_fcpe = FCPE(os.environ["fcpe_model_path"], f0_min=f0_min, f0_max=f0_max, dtype=torch.float32, device=self.device, sampling_rate=self.sr, threshold=0.03)
        f0 = self.model_fcpe.compute_f0(x, p_len=p_len)
        del self.model_fcpe
        gc.collect()
        return f0

    def get_torchfcpe(self, x, sr, f0_min, f0_max, p_len, *args, **kwargs):
        self.model_torchfcpe = spawn_bundled_infer_model(device=self.device)
        f0 = self.model_torchfcpe.infer(
            torch.from_numpy(x).float().unsqueeze(0).unsqueeze(-1).to(self.device),
            sr=sr,
            decoder_mode="local_argmax",
            threshold=0.006,
            f0_min=f0_min,
            f0_max=f0_max,
            output_interp_target_length=p_len
        )
        return f0.squeeze().cpu().numpy()

    def autotune_f0(self, f0):
        autotuned_f0 = []
        for freq in f0:
            closest_notes = [x for x in self.note_dict if abs(x - freq) == min(abs(n - freq) for n in self.note_dict)]
            autotuned_f0.append(random.choice(closest_notes))
        return np.array(autotuned_f0, np.float64)


    # Fork Feature: Acquire median hybrid f0 estimation calculation
    def get_f0_hybrid_computation(
        self,
        methods_str,
        input_audio_path,
        x,
        f0_min,
        f0_max,
        p_len,
        filter_radius,
        crepe_hop_length,
        time_step,
    ):
        # Get various f0 methods from input to use in the computation stack
        methods_str = re.search('hybrid\[(.+)\]', methods_str)
        if methods_str:  # Ensure a match was found
            methods = [method.strip() for method in methods_str.group(1).split('+')]
        f0_computation_stack = []

        print("Calculating f0 pitch estimations for methods: %s" % str(methods))
        x = x.astype(np.float32)
        x /= np.quantile(np.abs(x), 0.999)
        # Get f0 calculations for all methods specified
        for method in methods:
            f0 = None
            if method == "pm":
                f0 = (
                    parselmouth.Sound(x, self.sr)
                    .to_pitch_ac(
                        time_step=time_step / 1000,
                        voicing_threshold=0.6,
                        pitch_floor=f0_min,
                        pitch_ceiling=f0_max,
                    )
                    .selected_array["frequency"]
                )
                pad_size = (p_len - len(f0) + 1) // 2
                if pad_size > 0 or p_len - len(f0) - pad_size > 0:
                    f0 = np.pad(
                        f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
                    )
            elif method == "crepe":
                f0 = self.get_f0_official_crepe_computation(x, f0_min, f0_max, model="full")
                f0 = f0[1:]
            elif method == "crepe-tiny":
                f0 = self.get_f0_official_crepe_computation(x, f0_min, f0_max, model="tiny")
                f0 = f0[1:]  # Get rid of extra first frame
            elif method == "mangio-crepe":
                f0 = self.get_f0_crepe_computation(
                    x, f0_min, f0_max, p_len, crepe_hop_length=crepe_hop_length
                )
            elif method == "mangio-crepe-tiny":
                f0 = self.get_f0_crepe_computation(
                    x, f0_min, f0_max, p_len, crepe_hop_length=crepe_hop_length, model="tiny"
                )
            elif method == "harvest":
                input_audio_path2wav[input_audio_path] = x.astype(np.double)
                f0 = cache_harvest_f0(input_audio_path, self.sr, f0_max, f0_min, 10)
                if filter_radius > 2:
                    f0 = signal.medfilt(f0, 3)
            elif method == "dio":
                f0, t = pyworld.dio(
                    x.astype(np.double),
                    fs=self.sr,
                    f0_ceil=f0_max,
                    f0_floor=f0_min,
                    frame_period=10,
                )
                f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.sr)
                f0 = signal.medfilt(f0, 3)
                f0 = f0[1:]
            elif method == "rmvpe":
                f0 = self.get_rmvpe(x)
                f0 = f0[1:]
            elif method == "fcpe_legacy":
                f0 = self.get_fcpe(x, f0_min=f0_min, f0_max=f0_max, p_len=p_len)
            elif method == "fcpe":
                f0 = self.get_torchfcpe(x, self.sr, f0_min, f0_max, p_len)
            elif method == "pyin":
                f0 = self.get_f0_pyin_computation(input_audio_path, f0_min, f0_max)
            # Push method to the stack
            f0_computation_stack.append(f0)

        for fc in f0_computation_stack:
            print(len(fc))

        print("Calculating hybrid median f0 from the stack of: %s" % str(methods))
        f0_median_hybrid = None
        if len(f0_computation_stack) == 1:
            f0_median_hybrid = f0_computation_stack[0]
        else:
            f0_median_hybrid = np.nanmedian(f0_computation_stack, axis=0)
        return f0_median_hybrid
    
    def get_f0(
        self,
        input_audio_path,
        x,
        p_len,
        f0_up_key,
        f0_method,
        filter_radius,
        crepe_hop_length,
        f0_autotune,
        inp_f0=None,
        f0_min=50,
        f0_max=1100,
    ):
        global input_audio_path2wav
        time_step = self.window / self.sr * 1000
        f0_min = f0_min
        f0_max = f0_max
        f0_mel_min = 1127 * np.log(1 + f0_min / 700)
        f0_mel_max = 1127 * np.log(1 + f0_max / 700)

        if f0_method == "pm":
            f0 = (
                parselmouth.Sound(x, self.sr)
                .to_pitch_ac(
                    time_step=time_step / 1000,
                    voicing_threshold=0.6,
                    pitch_floor=f0_min,
                    pitch_ceiling=f0_max,
                )
                .selected_array["frequency"]
            )
            pad_size = (p_len - len(f0) + 1) // 2
            if pad_size > 0 or p_len - len(f0) - pad_size > 0:
                f0 = np.pad(
                    f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
                )
        elif f0_method == "harvest":
            input_audio_path2wav[input_audio_path] = x.astype(np.double)
            f0 = cache_harvest_f0(input_audio_path, self.sr, f0_max, f0_min, 10)
            if filter_radius > 2:
                f0 = signal.medfilt(f0, 3)
        elif f0_method == "dio":  # Potentially Buggy?
            f0, t = pyworld.dio(
                x.astype(np.double),
                fs=self.sr,
                f0_ceil=f0_max,
                f0_floor=f0_min,
                frame_period=10,
            )
            f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.sr)
            f0 = signal.medfilt(f0, 3)
        elif f0_method == "crepe":
            model = "full"
            # Pick a batch size that doesn't cause memory errors on your gpu
            batch_size = 512
            # Compute pitch using first gpu
            audio = torch.tensor(np.copy(x))[None].float()
            f0, pd = torchcrepe.predict(
                audio,
                self.sr,
                self.window,
                f0_min,
                f0_max,
                model,
                batch_size=batch_size,
                device=self.device,
                return_periodicity=True,
            )
            pd = torchcrepe.filter.median(pd, 3)
            f0 = torchcrepe.filter.mean(f0, 3)
            f0[pd < 0.1] = 0
            f0 = f0[0].cpu().numpy()
        elif f0_method == "crepe-tiny":
            f0 = self.get_f0_official_crepe_computation(x, f0_min, f0_max, model="tiny")
        elif f0_method == "mangio-crepe":
            f0 = self.get_f0_crepe_computation(
                x, f0_min, f0_max, p_len, crepe_hop_length=crepe_hop_length
            )
        elif f0_method == "mangio-crepe-tiny":
            f0 = self.get_f0_crepe_computation(
                x, f0_min, f0_max, p_len, crepe_hop_length=crepe_hop_length, model="tiny"
            )
        elif f0_method == "rmvpe":
            if not hasattr(self, "model_rmvpe"):
                from lib.infer.infer_libs.rmvpe import RMVPE

                logger.info(
                    f"Loading rmvpe model, {os.environ['rmvpe_model_path']}"
                )
                self.model_rmvpe = RMVPE(
                    os.environ["rmvpe_model_path"],
                    is_half=self.is_half,
                    device=self.device,
                )
            f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03)

            if "privateuseone" in str(self.device):  # clean ortruntime memory
                del self.model_rmvpe.model
                del self.model_rmvpe
                logger.info("Cleaning ortruntime memory")
        elif f0_method == "rmvpe_legacy": # befor this rmvpe+, refrence by fcpe_legacy
            params = {'x': x, 'p_len': p_len, 'f0_up_key': f0_up_key, 'f0_min': f0_min, 
                      'f0_max': f0_max, 'time_step': time_step, 'filter_radius': filter_radius, 
                      'crepe_hop_length': crepe_hop_length, 'model': "full"
                      }
            f0 = self.get_pitch_dependant_rmvpe(**params)
        elif f0_method == "pyin":
            f0 = self.get_f0_pyin_computation(input_audio_path, f0_min, f0_max)
        elif f0_method == "fcpe_legacy":
            f0 = self.get_fcpe(x, f0_min=f0_min, f0_max=f0_max, p_len=p_len)
        elif f0_method == "fcpe":
            f0 = self.get_torchfcpe(x, self.sr, f0_min, f0_max, p_len)
        elif "hybrid" in f0_method:
            # Perform hybrid median pitch estimation
            input_audio_path2wav[input_audio_path] = x.astype(np.double)
            f0 = self.get_f0_hybrid_computation(
                f0_method,
                input_audio_path,
                x,
                f0_min,
                f0_max,
                p_len,
                filter_radius,
                crepe_hop_length,
                time_step,
            )
        #print("Autotune:", f0_autotune)
        if f0_autotune == True:
            print("Autotune:", f0_autotune)
            f0 = self.autotune_f0(f0)

        f0 *= pow(2, f0_up_key / 12)
        # with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
        tf0 = self.sr // self.window  # 每秒f0点数
        if inp_f0 is not None:
            delta_t = np.round(
                (inp_f0[:, 0].max() - inp_f0[:, 0].min()) * tf0 + 1
            ).astype("int16")
            replace_f0 = np.interp(
                list(range(delta_t)), inp_f0[:, 0] * 100, inp_f0[:, 1]
            )
            shape = f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)].shape[0]
            f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)] = replace_f0[
                :shape
            ]
        # with open("test_opt.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
        f0bak = f0.copy()
        f0_mel = 1127 * np.log(1 + f0 / 700)
        f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
            f0_mel_max - f0_mel_min
        ) + 1
        f0_mel[f0_mel <= 1] = 1
        f0_mel[f0_mel > 255] = 255
        f0_coarse = np.rint(f0_mel).astype(np.int32)
        return f0_coarse, f0bak  # 1-0

    def vc(
        self,
        model,
        net_g,
        sid,
        audio0,
        pitch,
        pitchf,
        times,
        index,
        big_npy,
        index_rate,
        version,
        protect,
    ):  # ,file_index,file_big_npy
        feats = torch.from_numpy(audio0)
        if self.is_half:
            feats = feats.half()
        else:
            feats = feats.float()
        if feats.dim() == 2:  # double channels
            feats = feats.mean(-1)
        assert feats.dim() == 1, feats.dim()
        feats = feats.view(1, -1)
        padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False)

        inputs = {
            "source": feats.to(self.device),
            "padding_mask": padding_mask,
            "output_layer": 9 if version == "v1" else 12,
        }
        t0 = ttime()
        with torch.no_grad():
            logits = model.extract_features(**inputs)
            feats = model.final_proj(logits[0]) if version == "v1" else logits[0]
        if protect < 0.5 and pitch is not None and pitchf is not None:
            feats0 = feats.clone()
        if (
            not isinstance(index, type(None))
            and not isinstance(big_npy, type(None))
            and index_rate != 0
        ):
            npy = feats[0].cpu().numpy()
            if self.is_half:
                npy = npy.astype("float32")

            # _, I = index.search(npy, 1)
            # npy = big_npy[I.squeeze()]

            score, ix = index.search(npy, k=8)
            weight = np.square(1 / score)
            weight /= weight.sum(axis=1, keepdims=True)
            npy = np.sum(big_npy[ix] * np.expand_dims(weight, axis=2), axis=1)

            if self.is_half:
                npy = npy.astype("float16")
            feats = (
                torch.from_numpy(npy).unsqueeze(0).to(self.device) * index_rate
                + (1 - index_rate) * feats
            )

        feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
        if protect < 0.5 and pitch is not None and pitchf is not None:
            feats0 = F.interpolate(feats0.permute(0, 2, 1), scale_factor=2).permute(
                0, 2, 1
            )
        t1 = ttime()
        p_len = audio0.shape[0] // self.window
        if feats.shape[1] < p_len:
            p_len = feats.shape[1]
            if pitch is not None and pitchf is not None:
                pitch = pitch[:, :p_len]
                pitchf = pitchf[:, :p_len]

        if protect < 0.5 and pitch is not None and pitchf is not None:
            pitchff = pitchf.clone()
            pitchff[pitchf > 0] = 1
            pitchff[pitchf < 1] = protect
            pitchff = pitchff.unsqueeze(-1)
            feats = feats * pitchff + feats0 * (1 - pitchff)
            feats = feats.to(feats0.dtype)
        p_len = torch.tensor([p_len], device=self.device).long()
        with torch.no_grad():
            hasp = pitch is not None and pitchf is not None
            arg = (feats, p_len, pitch, pitchf, sid) if hasp else (feats, p_len, sid)
            audio1 = (net_g.infer(*arg)[0][0, 0]).data.cpu().float().numpy()
            del hasp, arg
        del feats, p_len, padding_mask
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
        t2 = ttime()
        times[0] += t1 - t0
        times[2] += t2 - t1
        return audio1
    def process_t(self, t, s, window, audio_pad, pitch, pitchf, times, index, big_npy, index_rate, version, protect, t_pad_tgt, if_f0, sid, model, net_g):
        t = t // window * window
        if if_f0 == 1:
            return self.vc(
                model,
                net_g,
                sid,
                audio_pad[s : t + t_pad_tgt + window],
                pitch[:, s // window : (t + t_pad_tgt) // window],
                pitchf[:, s // window : (t + t_pad_tgt) // window],
                times,
                index,
                big_npy,
                index_rate,
                version,
                protect,
            )[t_pad_tgt : -t_pad_tgt]
        else:
            return self.vc(
                model,
                net_g,
                sid,
                audio_pad[s : t + t_pad_tgt + window],
                None,
                None,
                times,
                index,
                big_npy,
                index_rate,
                version,
                protect,
            )[t_pad_tgt : -t_pad_tgt]


    def pipeline(
        self,
        model,
        net_g,
        sid,
        audio,
        input_audio_path,
        times,
        f0_up_key,
        f0_method,
        file_index,
        index_rate,
        if_f0,
        filter_radius,
        tgt_sr,
        resample_sr,
        rms_mix_rate,
        version,
        protect,
        crepe_hop_length, 
        f0_autotune, 
        f0_min=50, 
        f0_max=1100
    ):
        if (
            file_index != ""
            and isinstance(file_index, str)
            # and file_big_npy != ""
            # and os.path.exists(file_big_npy) == True
            and os.path.exists(file_index)
            and index_rate != 0
        ):
            try:
                index = faiss.read_index(file_index)
                # big_npy = np.load(file_big_npy)
                big_npy = index.reconstruct_n(0, index.ntotal)
            except:
                traceback.print_exc()
                index = big_npy = None
        else:
            index = big_npy = None
        audio = signal.filtfilt(bh, ah, audio)
        audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode="reflect")
        opt_ts = []
        if audio_pad.shape[0] > self.t_max:
            audio_sum = np.zeros_like(audio)
            for i in range(self.window):
                audio_sum += audio_pad[i : i - self.window]
            for t in range(self.t_center, audio.shape[0], self.t_center):
                opt_ts.append(
                    t
                    - self.t_query
                    + np.where(
                        np.abs(audio_sum[t - self.t_query : t + self.t_query])
                        == np.abs(audio_sum[t - self.t_query : t + self.t_query]).min()
                    )[0][0]
                )
        s = 0
        audio_opt = []
        t = None
        t1 = ttime()
        audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode="reflect")
        p_len = audio_pad.shape[0] // self.window
        inp_f0 = None
        
        sid = torch.tensor(sid, device=self.device).unsqueeze(0).long()
        pitch, pitchf = None, None
        if if_f0:
            pitch, pitchf = self.get_f0(
                input_audio_path,
                audio_pad,
                p_len,
                f0_up_key,
                f0_method,
                filter_radius, 
                crepe_hop_length, 
                f0_autotune,
                inp_f0, 
                f0_min, 
                f0_max
            )
            pitch = pitch[:p_len]
            pitchf = pitchf[:p_len]
            if "mps" not in str(self.device) or "xpu" not in str(self.device):
                pitchf = pitchf.astype(np.float32)
            pitch = torch.tensor(pitch, device=self.device).unsqueeze(0).long()
            pitchf = torch.tensor(pitchf, device=self.device).unsqueeze(0).float()
        t2 = ttime()
        times[1] += t2 - t1

        with tqdm(total=len(opt_ts), desc="Processing", unit="window") as pbar:
            for i, t in enumerate(opt_ts):
                t = t // self.window * self.window
                start = s
                end = t + self.t_pad2 + self.window
                audio_slice = audio_pad[start:end]
                pitch_slice = pitch[:, start // self.window:end // self.window] if if_f0 else None
                pitchf_slice = pitchf[:, start // self.window:end // self.window] if if_f0 else None
                audio_opt.append(self.vc(model, net_g, sid, audio_slice, pitch_slice, pitchf_slice, times, index, big_npy, index_rate, version, protect)[self.t_pad_tgt : -self.t_pad_tgt])
                s = t
                pbar.update(1)
                pbar.refresh()

        audio_slice = audio_pad[t:]
        pitch_slice = pitch[:, t // self.window:] if if_f0 and t is not None else pitch
        pitchf_slice = pitchf[:, t // self.window:] if if_f0 and t is not None else pitchf
        audio_opt.append(self.vc(model, net_g, sid, audio_slice, pitch_slice, pitchf_slice, times, index, big_npy, index_rate, version, protect)[self.t_pad_tgt : -self.t_pad_tgt])
        
        audio_opt = np.concatenate(audio_opt)
        if rms_mix_rate != 1:
            audio_opt = change_rms(audio, 16000, audio_opt, tgt_sr, rms_mix_rate)
        if tgt_sr != resample_sr >= 16000:
            audio_opt = librosa.resample(
                audio_opt, orig_sr=tgt_sr, target_sr=resample_sr
            )
        audio_max = np.abs(audio_opt).max() / 0.99
        max_int16 = 32768
        if audio_max > 1:
            max_int16 /= audio_max
        audio_opt = (audio_opt * max_int16).astype(np.int16)
        del pitch, pitchf, sid
        if torch.cuda.is_available():
            torch.cuda.empty_cache()

        print("Returning completed audio...")
        return audio_opt