File size: 29,279 Bytes
736c789 42e38ee 736c789 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 |
import os
import sys
import gc
import traceback
import logging
logger = logging.getLogger(__name__)
from functools import lru_cache
from time import time as ttime
from torch import Tensor
import faiss
import librosa
import numpy as np
import parselmouth
import pyworld
import torch.nn.functional as F
from scipy import signal
from tqdm import tqdm
import random
now_dir = os.getcwd()
sys.path.append(now_dir)
import re
from functools import partial
bh, ah = signal.butter(N=5, Wn=48, btype="high", fs=16000)
input_audio_path2wav = {}
import torchcrepe # Fork Feature. Crepe algo for training and preprocess
from torchfcpe import spawn_bundled_infer_model
import torch
from lib.infer_libs.rmvpe import RMVPE
from lib.infer_libs.fcpe import FCPE
@lru_cache
def cache_harvest_f0(input_audio_path, fs, f0max, f0min, frame_period):
audio = input_audio_path2wav[input_audio_path]
f0, t = pyworld.harvest(
audio,
fs=fs,
f0_ceil=f0max,
f0_floor=f0min,
frame_period=frame_period,
)
f0 = pyworld.stonemask(audio, f0, t, fs)
return f0
def change_rms(data1, sr1, data2, sr2, rate): # 1是输入音频,2是输出音频,rate是2的占比
# print(data1.max(),data2.max())
rms1 = librosa.feature.rms(
y=data1, frame_length=sr1 // 2 * 2, hop_length=sr1 // 2
) # 每半秒一个点
rms2 = librosa.feature.rms(y=data2, frame_length=sr2 // 2 * 2, hop_length=sr2 // 2)
rms1 = torch.from_numpy(rms1)
rms1 = F.interpolate(
rms1.unsqueeze(0), size=data2.shape[0], mode="linear"
).squeeze()
rms2 = torch.from_numpy(rms2)
rms2 = F.interpolate(
rms2.unsqueeze(0), size=data2.shape[0], mode="linear"
).squeeze()
rms2 = torch.max(rms2, torch.zeros_like(rms2) + 1e-6)
data2 *= (
torch.pow(rms1, torch.tensor(1 - rate))
* torch.pow(rms2, torch.tensor(rate - 1))
).numpy()
return data2
class Pipeline(object):
def __init__(self, tgt_sr, config):
self.x_pad, self.x_query, self.x_center, self.x_max, self.is_half = (
config.x_pad,
config.x_query,
config.x_center,
config.x_max,
config.is_half,
)
self.sr = 16000 # hubert输入采样率
self.window = 160 # 每帧点数
self.t_pad = self.sr * self.x_pad # 每条前后pad时间
self.t_pad_tgt = tgt_sr * self.x_pad
self.t_pad2 = self.t_pad * 2
self.t_query = self.sr * self.x_query # 查询切点前后查询时间
self.t_center = self.sr * self.x_center # 查询切点位置
self.t_max = self.sr * self.x_max # 免查询时长阈值
self.device = config.device
self.model_rmvpe = RMVPE(os.environ["rmvpe_model_path"], is_half=self.is_half, device=self.device)
self.note_dict = [
65.41, 69.30, 73.42, 77.78, 82.41, 87.31,
92.50, 98.00, 103.83, 110.00, 116.54, 123.47,
130.81, 138.59, 146.83, 155.56, 164.81, 174.61,
185.00, 196.00, 207.65, 220.00, 233.08, 246.94,
261.63, 277.18, 293.66, 311.13, 329.63, 349.23,
369.99, 392.00, 415.30, 440.00, 466.16, 493.88,
523.25, 554.37, 587.33, 622.25, 659.25, 698.46,
739.99, 783.99, 830.61, 880.00, 932.33, 987.77,
1046.50, 1108.73, 1174.66, 1244.51, 1318.51, 1396.91,
1479.98, 1567.98, 1661.22, 1760.00, 1864.66, 1975.53,
2093.00, 2217.46, 2349.32, 2489.02, 2637.02, 2793.83,
2959.96, 3135.96, 3322.44, 3520.00, 3729.31, 3951.07
]
# Fork Feature: Get the best torch device to use for f0 algorithms that require a torch device. Will return the type (torch.device)
def get_optimal_torch_device(self, index: int = 0) -> torch.device:
if torch.cuda.is_available():
return torch.device(
f"cuda:{index % torch.cuda.device_count()}"
) # Very fast
elif torch.backends.mps.is_available():
return torch.device("mps")
return torch.device("cpu")
# Fork Feature: Compute f0 with the crepe method
def get_f0_crepe_computation(
self,
x,
f0_min,
f0_max,
p_len,
*args, # 512 before. Hop length changes the speed that the voice jumps to a different dramatic pitch. Lower hop lengths means more pitch accuracy but longer inference time.
**kwargs, # Either use crepe-tiny "tiny" or crepe "full". Default is full
):
x = x.astype(
np.float32
) # fixes the F.conv2D exception. We needed to convert double to float.
x /= np.quantile(np.abs(x), 0.999)
torch_device = self.get_optimal_torch_device()
audio = torch.from_numpy(x).to(torch_device, copy=True)
audio = torch.unsqueeze(audio, dim=0)
if audio.ndim == 2 and audio.shape[0] > 1:
audio = torch.mean(audio, dim=0, keepdim=True).detach()
audio = audio.detach()
hop_length = kwargs.get('crepe_hop_length', 160)
model = kwargs.get('model', 'full')
print("Initiating prediction with a crepe_hop_length of: " + str(hop_length))
pitch: Tensor = torchcrepe.predict(
audio,
self.sr,
hop_length,
f0_min,
f0_max,
model,
batch_size=hop_length * 2,
device=torch_device,
pad=True,
)
p_len = p_len or x.shape[0] // hop_length
# Resize the pitch for final f0
source = np.array(pitch.squeeze(0).cpu().float().numpy())
source[source < 0.001] = np.nan
target = np.interp(
np.arange(0, len(source) * p_len, len(source)) / p_len,
np.arange(0, len(source)),
source,
)
f0 = np.nan_to_num(target)
return f0 # Resized f0
def get_f0_official_crepe_computation(
self,
x,
f0_min,
f0_max,
*args,
**kwargs
):
# Pick a batch size that doesn't cause memory errors on your gpu
batch_size = 512
# Compute pitch using first gpu
audio = torch.tensor(np.copy(x))[None].float()
model = kwargs.get('model', 'full')
f0, pd = torchcrepe.predict(
audio,
self.sr,
self.window,
f0_min,
f0_max,
model,
batch_size=batch_size,
device=self.device,
return_periodicity=True,
)
pd = torchcrepe.filter.median(pd, 3)
f0 = torchcrepe.filter.mean(f0, 3)
f0[pd < 0.1] = 0
f0 = f0[0].cpu().numpy()
return f0
# Fork Feature: Compute pYIN f0 method
def get_f0_pyin_computation(self, x, f0_min, f0_max):
y, sr = librosa.load(x, sr=self.sr, mono=True)
f0, _, _ = librosa.pyin(y, fmin=f0_min, fmax=f0_max, sr=self.sr)
f0 = f0[1:] # Get rid of extra first frame
return f0
def get_rmvpe(self, x, *args, **kwargs):
if not hasattr(self, "model_rmvpe"):
from lib.infer.infer_libs.rmvpe import RMVPE
logger.info(
f"Loading rmvpe model, {os.environ['rmvpe_model_path']}"
)
self.model_rmvpe = RMVPE(
os.environ["rmvpe_model_path"],
is_half=self.is_half,
device=self.device,
)
f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03)
if "privateuseone" in str(self.device): # clean ortruntime memory
del self.model_rmvpe.model
del self.model_rmvpe
logger.info("Cleaning ortruntime memory")
return f0
def get_pitch_dependant_rmvpe(self, x, f0_min=1, f0_max=40000, *args, **kwargs):
if not hasattr(self, "model_rmvpe"):
from lib.infer.infer_libs.rmvpe import RMVPE
logger.info(
f"Loading rmvpe model, {os.environ['rmvpe_model_path']}"
)
self.model_rmvpe = RMVPE(
os.environ["rmvpe_model_path"],
is_half=self.is_half,
device=self.device,
)
f0 = self.model_rmvpe.infer_from_audio_with_pitch(x, thred=0.03, f0_min=f0_min, f0_max=f0_max)
if "privateuseone" in str(self.device): # clean ortruntime memory
del self.model_rmvpe.model
del self.model_rmvpe
logger.info("Cleaning ortruntime memory")
return f0
def get_fcpe(self, x, f0_min, f0_max, p_len, *args, **kwargs):
self.model_fcpe = FCPE(os.environ["fcpe_model_path"], f0_min=f0_min, f0_max=f0_max, dtype=torch.float32, device=self.device, sampling_rate=self.sr, threshold=0.03)
f0 = self.model_fcpe.compute_f0(x, p_len=p_len)
del self.model_fcpe
gc.collect()
return f0
def get_torchfcpe(self, x, sr, f0_min, f0_max, p_len, *args, **kwargs):
self.model_torchfcpe = spawn_bundled_infer_model(device=self.device)
f0 = self.model_torchfcpe.infer(
torch.from_numpy(x).float().unsqueeze(0).unsqueeze(-1).to(self.device),
sr=sr,
decoder_mode="local_argmax",
threshold=0.006,
f0_min=f0_min,
f0_max=f0_max,
output_interp_target_length=p_len
)
return f0.squeeze().cpu().numpy()
def autotune_f0(self, f0):
autotuned_f0 = []
for freq in f0:
closest_notes = [x for x in self.note_dict if abs(x - freq) == min(abs(n - freq) for n in self.note_dict)]
autotuned_f0.append(random.choice(closest_notes))
return np.array(autotuned_f0, np.float64)
# Fork Feature: Acquire median hybrid f0 estimation calculation
def get_f0_hybrid_computation(
self,
methods_str,
input_audio_path,
x,
f0_min,
f0_max,
p_len,
filter_radius,
crepe_hop_length,
time_step,
):
# Get various f0 methods from input to use in the computation stack
methods_str = re.search('hybrid\[(.+)\]', methods_str)
if methods_str: # Ensure a match was found
methods = [method.strip() for method in methods_str.group(1).split('+')]
f0_computation_stack = []
print("Calculating f0 pitch estimations for methods: %s" % str(methods))
x = x.astype(np.float32)
x /= np.quantile(np.abs(x), 0.999)
# Get f0 calculations for all methods specified
for method in methods:
f0 = None
if method == "pm":
f0 = (
parselmouth.Sound(x, self.sr)
.to_pitch_ac(
time_step=time_step / 1000,
voicing_threshold=0.6,
pitch_floor=f0_min,
pitch_ceiling=f0_max,
)
.selected_array["frequency"]
)
pad_size = (p_len - len(f0) + 1) // 2
if pad_size > 0 or p_len - len(f0) - pad_size > 0:
f0 = np.pad(
f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
)
elif method == "crepe":
f0 = self.get_f0_official_crepe_computation(x, f0_min, f0_max, model="full")
f0 = f0[1:]
elif method == "crepe-tiny":
f0 = self.get_f0_official_crepe_computation(x, f0_min, f0_max, model="tiny")
f0 = f0[1:] # Get rid of extra first frame
elif method == "mangio-crepe":
f0 = self.get_f0_crepe_computation(
x, f0_min, f0_max, p_len, crepe_hop_length=crepe_hop_length
)
elif method == "mangio-crepe-tiny":
f0 = self.get_f0_crepe_computation(
x, f0_min, f0_max, p_len, crepe_hop_length=crepe_hop_length, model="tiny"
)
elif method == "harvest":
input_audio_path2wav[input_audio_path] = x.astype(np.double)
f0 = cache_harvest_f0(input_audio_path, self.sr, f0_max, f0_min, 10)
if filter_radius > 2:
f0 = signal.medfilt(f0, 3)
elif method == "dio":
f0, t = pyworld.dio(
x.astype(np.double),
fs=self.sr,
f0_ceil=f0_max,
f0_floor=f0_min,
frame_period=10,
)
f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.sr)
f0 = signal.medfilt(f0, 3)
f0 = f0[1:]
elif method == "rmvpe":
f0 = self.get_rmvpe(x)
f0 = f0[1:]
elif method == "fcpe_legacy":
f0 = self.get_fcpe(x, f0_min=f0_min, f0_max=f0_max, p_len=p_len)
elif method == "fcpe":
f0 = self.get_torchfcpe(x, self.sr, f0_min, f0_max, p_len)
elif method == "pyin":
f0 = self.get_f0_pyin_computation(input_audio_path, f0_min, f0_max)
# Push method to the stack
f0_computation_stack.append(f0)
for fc in f0_computation_stack:
print(len(fc))
print("Calculating hybrid median f0 from the stack of: %s" % str(methods))
f0_median_hybrid = None
if len(f0_computation_stack) == 1:
f0_median_hybrid = f0_computation_stack[0]
else:
f0_median_hybrid = np.nanmedian(f0_computation_stack, axis=0)
return f0_median_hybrid
def get_f0(
self,
input_audio_path,
x,
p_len,
f0_up_key,
f0_method,
filter_radius,
crepe_hop_length,
f0_autotune,
inp_f0=None,
f0_min=50,
f0_max=1100,
):
global input_audio_path2wav
time_step = self.window / self.sr * 1000
f0_min = f0_min
f0_max = f0_max
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
if f0_method == "pm":
f0 = (
parselmouth.Sound(x, self.sr)
.to_pitch_ac(
time_step=time_step / 1000,
voicing_threshold=0.6,
pitch_floor=f0_min,
pitch_ceiling=f0_max,
)
.selected_array["frequency"]
)
pad_size = (p_len - len(f0) + 1) // 2
if pad_size > 0 or p_len - len(f0) - pad_size > 0:
f0 = np.pad(
f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
)
elif f0_method == "harvest":
input_audio_path2wav[input_audio_path] = x.astype(np.double)
f0 = cache_harvest_f0(input_audio_path, self.sr, f0_max, f0_min, 10)
if filter_radius > 2:
f0 = signal.medfilt(f0, 3)
elif f0_method == "dio": # Potentially Buggy?
f0, t = pyworld.dio(
x.astype(np.double),
fs=self.sr,
f0_ceil=f0_max,
f0_floor=f0_min,
frame_period=10,
)
f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.sr)
f0 = signal.medfilt(f0, 3)
elif f0_method == "crepe":
model = "full"
# Pick a batch size that doesn't cause memory errors on your gpu
batch_size = 512
# Compute pitch using first gpu
audio = torch.tensor(np.copy(x))[None].float()
f0, pd = torchcrepe.predict(
audio,
self.sr,
self.window,
f0_min,
f0_max,
model,
batch_size=batch_size,
device=self.device,
return_periodicity=True,
)
pd = torchcrepe.filter.median(pd, 3)
f0 = torchcrepe.filter.mean(f0, 3)
f0[pd < 0.1] = 0
f0 = f0[0].cpu().numpy()
elif f0_method == "crepe-tiny":
f0 = self.get_f0_official_crepe_computation(x, f0_min, f0_max, model="tiny")
elif f0_method == "mangio-crepe":
f0 = self.get_f0_crepe_computation(
x, f0_min, f0_max, p_len, crepe_hop_length=crepe_hop_length
)
elif f0_method == "mangio-crepe-tiny":
f0 = self.get_f0_crepe_computation(
x, f0_min, f0_max, p_len, crepe_hop_length=crepe_hop_length, model="tiny"
)
elif f0_method == "rmvpe":
if not hasattr(self, "model_rmvpe"):
from lib.infer.infer_libs.rmvpe import RMVPE
logger.info(
f"Loading rmvpe model, {os.environ['rmvpe_model_path']}"
)
self.model_rmvpe = RMVPE(
os.environ["rmvpe_model_path"],
is_half=self.is_half,
device=self.device,
)
f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03)
if "privateuseone" in str(self.device): # clean ortruntime memory
del self.model_rmvpe.model
del self.model_rmvpe
logger.info("Cleaning ortruntime memory")
elif f0_method == "rmvpe_legacy": # befor this rmvpe+, refrence by fcpe_legacy
params = {'x': x, 'p_len': p_len, 'f0_up_key': f0_up_key, 'f0_min': f0_min,
'f0_max': f0_max, 'time_step': time_step, 'filter_radius': filter_radius,
'crepe_hop_length': crepe_hop_length, 'model': "full"
}
f0 = self.get_pitch_dependant_rmvpe(**params)
elif f0_method == "pyin":
f0 = self.get_f0_pyin_computation(input_audio_path, f0_min, f0_max)
elif f0_method == "fcpe_legacy":
f0 = self.get_fcpe(x, f0_min=f0_min, f0_max=f0_max, p_len=p_len)
elif f0_method == "fcpe":
f0 = self.get_torchfcpe(x, self.sr, f0_min, f0_max, p_len)
elif "hybrid" in f0_method:
# Perform hybrid median pitch estimation
input_audio_path2wav[input_audio_path] = x.astype(np.double)
f0 = self.get_f0_hybrid_computation(
f0_method,
input_audio_path,
x,
f0_min,
f0_max,
p_len,
filter_radius,
crepe_hop_length,
time_step,
)
#print("Autotune:", f0_autotune)
if f0_autotune == True:
print("Autotune:", f0_autotune)
f0 = self.autotune_f0(f0)
f0 *= pow(2, f0_up_key / 12)
# with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
tf0 = self.sr // self.window # 每秒f0点数
if inp_f0 is not None:
delta_t = np.round(
(inp_f0[:, 0].max() - inp_f0[:, 0].min()) * tf0 + 1
).astype("int16")
replace_f0 = np.interp(
list(range(delta_t)), inp_f0[:, 0] * 100, inp_f0[:, 1]
)
shape = f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)].shape[0]
f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)] = replace_f0[
:shape
]
# with open("test_opt.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
f0bak = f0.copy()
f0_mel = 1127 * np.log(1 + f0 / 700)
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
f0_mel_max - f0_mel_min
) + 1
f0_mel[f0_mel <= 1] = 1
f0_mel[f0_mel > 255] = 255
f0_coarse = np.rint(f0_mel).astype(np.int32)
return f0_coarse, f0bak # 1-0
def vc(
self,
model,
net_g,
sid,
audio0,
pitch,
pitchf,
times,
index,
big_npy,
index_rate,
version,
protect,
): # ,file_index,file_big_npy
feats = torch.from_numpy(audio0)
if self.is_half:
feats = feats.half()
else:
feats = feats.float()
if feats.dim() == 2: # double channels
feats = feats.mean(-1)
assert feats.dim() == 1, feats.dim()
feats = feats.view(1, -1)
padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False)
inputs = {
"source": feats.to(self.device),
"padding_mask": padding_mask,
"output_layer": 9 if version == "v1" else 12,
}
t0 = ttime()
with torch.no_grad():
logits = model.extract_features(**inputs)
feats = model.final_proj(logits[0]) if version == "v1" else logits[0]
if protect < 0.5 and pitch is not None and pitchf is not None:
feats0 = feats.clone()
if (
not isinstance(index, type(None))
and not isinstance(big_npy, type(None))
and index_rate != 0
):
npy = feats[0].cpu().numpy()
if self.is_half:
npy = npy.astype("float32")
# _, I = index.search(npy, 1)
# npy = big_npy[I.squeeze()]
score, ix = index.search(npy, k=8)
weight = np.square(1 / score)
weight /= weight.sum(axis=1, keepdims=True)
npy = np.sum(big_npy[ix] * np.expand_dims(weight, axis=2), axis=1)
if self.is_half:
npy = npy.astype("float16")
feats = (
torch.from_numpy(npy).unsqueeze(0).to(self.device) * index_rate
+ (1 - index_rate) * feats
)
feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
if protect < 0.5 and pitch is not None and pitchf is not None:
feats0 = F.interpolate(feats0.permute(0, 2, 1), scale_factor=2).permute(
0, 2, 1
)
t1 = ttime()
p_len = audio0.shape[0] // self.window
if feats.shape[1] < p_len:
p_len = feats.shape[1]
if pitch is not None and pitchf is not None:
pitch = pitch[:, :p_len]
pitchf = pitchf[:, :p_len]
if protect < 0.5 and pitch is not None and pitchf is not None:
pitchff = pitchf.clone()
pitchff[pitchf > 0] = 1
pitchff[pitchf < 1] = protect
pitchff = pitchff.unsqueeze(-1)
feats = feats * pitchff + feats0 * (1 - pitchff)
feats = feats.to(feats0.dtype)
p_len = torch.tensor([p_len], device=self.device).long()
with torch.no_grad():
hasp = pitch is not None and pitchf is not None
arg = (feats, p_len, pitch, pitchf, sid) if hasp else (feats, p_len, sid)
audio1 = (net_g.infer(*arg)[0][0, 0]).data.cpu().float().numpy()
del hasp, arg
del feats, p_len, padding_mask
if torch.cuda.is_available():
torch.cuda.empty_cache()
t2 = ttime()
times[0] += t1 - t0
times[2] += t2 - t1
return audio1
def process_t(self, t, s, window, audio_pad, pitch, pitchf, times, index, big_npy, index_rate, version, protect, t_pad_tgt, if_f0, sid, model, net_g):
t = t // window * window
if if_f0 == 1:
return self.vc(
model,
net_g,
sid,
audio_pad[s : t + t_pad_tgt + window],
pitch[:, s // window : (t + t_pad_tgt) // window],
pitchf[:, s // window : (t + t_pad_tgt) // window],
times,
index,
big_npy,
index_rate,
version,
protect,
)[t_pad_tgt : -t_pad_tgt]
else:
return self.vc(
model,
net_g,
sid,
audio_pad[s : t + t_pad_tgt + window],
None,
None,
times,
index,
big_npy,
index_rate,
version,
protect,
)[t_pad_tgt : -t_pad_tgt]
def pipeline(
self,
model,
net_g,
sid,
audio,
input_audio_path,
times,
f0_up_key,
f0_method,
file_index,
index_rate,
if_f0,
filter_radius,
tgt_sr,
resample_sr,
rms_mix_rate,
version,
protect,
crepe_hop_length,
f0_autotune,
f0_min=50,
f0_max=1100
):
if (
file_index != ""
and isinstance(file_index, str)
# and file_big_npy != ""
# and os.path.exists(file_big_npy) == True
and os.path.exists(file_index)
and index_rate != 0
):
try:
index = faiss.read_index(file_index)
# big_npy = np.load(file_big_npy)
big_npy = index.reconstruct_n(0, index.ntotal)
except:
traceback.print_exc()
index = big_npy = None
else:
index = big_npy = None
audio = signal.filtfilt(bh, ah, audio)
audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode="reflect")
opt_ts = []
if audio_pad.shape[0] > self.t_max:
audio_sum = np.zeros_like(audio)
for i in range(self.window):
audio_sum += audio_pad[i : i - self.window]
for t in range(self.t_center, audio.shape[0], self.t_center):
opt_ts.append(
t
- self.t_query
+ np.where(
np.abs(audio_sum[t - self.t_query : t + self.t_query])
== np.abs(audio_sum[t - self.t_query : t + self.t_query]).min()
)[0][0]
)
s = 0
audio_opt = []
t = None
t1 = ttime()
audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode="reflect")
p_len = audio_pad.shape[0] // self.window
inp_f0 = None
sid = torch.tensor(sid, device=self.device).unsqueeze(0).long()
pitch, pitchf = None, None
if if_f0:
pitch, pitchf = self.get_f0(
input_audio_path,
audio_pad,
p_len,
f0_up_key,
f0_method,
filter_radius,
crepe_hop_length,
f0_autotune,
inp_f0,
f0_min,
f0_max
)
pitch = pitch[:p_len]
pitchf = pitchf[:p_len]
if "mps" not in str(self.device) or "xpu" not in str(self.device):
pitchf = pitchf.astype(np.float32)
pitch = torch.tensor(pitch, device=self.device).unsqueeze(0).long()
pitchf = torch.tensor(pitchf, device=self.device).unsqueeze(0).float()
t2 = ttime()
times[1] += t2 - t1
with tqdm(total=len(opt_ts), desc="Processing", unit="window") as pbar:
for i, t in enumerate(opt_ts):
t = t // self.window * self.window
start = s
end = t + self.t_pad2 + self.window
audio_slice = audio_pad[start:end]
pitch_slice = pitch[:, start // self.window:end // self.window] if if_f0 else None
pitchf_slice = pitchf[:, start // self.window:end // self.window] if if_f0 else None
audio_opt.append(self.vc(model, net_g, sid, audio_slice, pitch_slice, pitchf_slice, times, index, big_npy, index_rate, version, protect)[self.t_pad_tgt : -self.t_pad_tgt])
s = t
pbar.update(1)
pbar.refresh()
audio_slice = audio_pad[t:]
pitch_slice = pitch[:, t // self.window:] if if_f0 and t is not None else pitch
pitchf_slice = pitchf[:, t // self.window:] if if_f0 and t is not None else pitchf
audio_opt.append(self.vc(model, net_g, sid, audio_slice, pitch_slice, pitchf_slice, times, index, big_npy, index_rate, version, protect)[self.t_pad_tgt : -self.t_pad_tgt])
audio_opt = np.concatenate(audio_opt)
if rms_mix_rate != 1:
audio_opt = change_rms(audio, 16000, audio_opt, tgt_sr, rms_mix_rate)
if tgt_sr != resample_sr >= 16000:
audio_opt = librosa.resample(
audio_opt, orig_sr=tgt_sr, target_sr=resample_sr
)
audio_max = np.abs(audio_opt).max() / 0.99
max_int16 = 32768
if audio_max > 1:
max_int16 /= audio_max
audio_opt = (audio_opt * max_int16).astype(np.int16)
del pitch, pitchf, sid
if torch.cuda.is_available():
torch.cuda.empty_cache()
print("Returning completed audio...")
return audio_opt |