project / createfile.py
Hev832's picture
Create createfile.py
7048940 verified
raw
history blame
4.2 kB
import os
import numpy as np
import faiss
from sklearn.cluster import MiniBatchKMeans
import traceback
# Set the working directory
os.chdir('/content/RVC')
# Parameters
model_name = 'My-Voice'
dataset_folder = '/content/dataset'
def calculate_audio_duration(file_path):
# Placeholder function - replace with actual implementation
return 0
# Check cache status based on audio duration
try:
duration = calculate_audio_duration(dataset_folder)
cache = duration < 600
except:
cache = False
# Ensure dataset folder is not empty
while len(os.listdir(dataset_folder)) < 1:
input("Your dataset folder is empty.")
os.makedirs(f'./logs/{model_name}', exist_ok=True)
# Run the preprocessing script
os.system(f'python infer/modules/train/preprocess.py {dataset_folder} 32000 2 ./logs/{model_name} False 3.0 > /dev/null 2>&1')
with open(f'./logs/{model_name}/preprocess.log', 'r') as f:
if 'end preprocess' in f.read():
print("✔ Success")
else:
print("Error preprocessing data... Make sure your dataset folder is correct.")
f0method = "rmvpe_gpu"
# Run the feature extraction scripts
if f0method != "rmvpe_gpu":
os.system(f'python infer/modules/train/extract/extract_f0_print.py ./logs/{model_name} 2 {f0method}')
else:
os.system(f'python infer/modules/train/extract/extract_f0_rmvpe.py 1 0 0 ./logs/{model_name} True')
os.system(f'python infer/modules/train/extract_feature_print.py cuda:0 1 0 ./logs/{model_name} v2 True')
with open(f'./logs/{model_name}/extract_f0_feature.log', 'r') as f:
if 'all-feature-done' in f.read():
print("✔ Success")
else:
print("Error preprocessing data... Make sure your data was preprocessed.")
def train_index(exp_dir1, version19):
exp_dir = f"logs/{exp_dir1}"
os.makedirs(exp_dir, exist_ok=True)
feature_dir = f"{exp_dir}/3_feature256" if version19 == "v1" else f"{exp_dir}/3_feature768"
if not os.path.exists(feature_dir):
return "请先进行特征提取!"
listdir_res = list(os.listdir(feature_dir))
if len(listdir_res) == 0:
return "请先进行特征提取!"
infos = []
npys = []
for name in sorted(listdir_res):
phone = np.load(f"{feature_dir}/{name}")
npys.append(phone)
big_npy = np.concatenate(npys, 0)
big_npy_idx = np.arange(big_npy.shape[0])
np.random.shuffle(big_npy_idx)
big_npy = big_npy[big_npy_idx]
if big_npy.shape[0] > 2e5:
infos.append(f"Trying doing kmeans {big_npy.shape[0]} shape to 10k centers.")
yield "\n".join(infos)
try:
big_npy = MiniBatchKMeans(
n_clusters=10000,
verbose=True,
batch_size=256,
compute_labels=False,
init="random"
).fit(big_npy).cluster_centers_
except:
info = traceback.format_exc()
infos.append(info)
yield "\n".join(infos)
np.save(f"{exp_dir}/total_fea.npy", big_npy)
n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39)
infos.append(f"{big_npy.shape},{n_ivf}")
yield "\n".join(infos)
index = faiss.index_factory(256 if version19 == "v1" else 768, f"IVF{n_ivf},Flat")
infos.append("training")
yield "\n".join(infos)
index_ivf = faiss.extract_index_ivf(index)
index_ivf.nprobe = 1
index.train(big_npy)
faiss.write_index(
index,
f"{exp_dir}/trained_IVF{n_ivf}_Flat_nprobe_{index_ivf.nprobe}_{exp_dir1}_{version19}.index"
)
infos.append("adding")
yield "\n".join(infos)
batch_size_add = 8192
for i in range(0, big_npy.shape[0], batch_size_add):
index.add(big_npy[i: i + batch_size_add])
faiss.write_index(
index,
f"{exp_dir}/added_IVF{n_ivf}_Flat_nprobe_{index_ivf.nprobe}_{exp_dir1}_{version19}.index"
)
infos.append(f"成功构建索引,added_IVF{n_ivf}_Flat_nprobe_{index_ivf.nprobe}_{exp_dir1}_{version19}.index")
training_log = train_index(model_name, 'v2')
for line in training_log:
print(line)
if 'adding' in line:
print("✔ Success")