|
import os |
|
import numpy as np |
|
import faiss |
|
from sklearn.cluster import MiniBatchKMeans |
|
import traceback |
|
|
|
|
|
os.chdir('/content/RVC') |
|
|
|
|
|
model_name = 'My-Voice' |
|
dataset_folder = '/content/dataset' |
|
|
|
def calculate_audio_duration(file_path): |
|
|
|
return 0 |
|
|
|
|
|
try: |
|
duration = calculate_audio_duration(dataset_folder) |
|
cache = duration < 600 |
|
except: |
|
cache = False |
|
|
|
|
|
while len(os.listdir(dataset_folder)) < 1: |
|
input("Your dataset folder is empty.") |
|
|
|
os.makedirs(f'./logs/{model_name}', exist_ok=True) |
|
|
|
|
|
os.system(f'python infer/modules/train/preprocess.py {dataset_folder} 32000 2 ./logs/{model_name} False 3.0 > /dev/null 2>&1') |
|
|
|
with open(f'./logs/{model_name}/preprocess.log', 'r') as f: |
|
if 'end preprocess' in f.read(): |
|
print("✔ Success") |
|
else: |
|
print("Error preprocessing data... Make sure your dataset folder is correct.") |
|
|
|
f0method = "rmvpe_gpu" |
|
|
|
|
|
if f0method != "rmvpe_gpu": |
|
os.system(f'python infer/modules/train/extract/extract_f0_print.py ./logs/{model_name} 2 {f0method}') |
|
else: |
|
os.system(f'python infer/modules/train/extract/extract_f0_rmvpe.py 1 0 0 ./logs/{model_name} True') |
|
|
|
os.system(f'python infer/modules/train/extract_feature_print.py cuda:0 1 0 ./logs/{model_name} v2 True') |
|
|
|
with open(f'./logs/{model_name}/extract_f0_feature.log', 'r') as f: |
|
if 'all-feature-done' in f.read(): |
|
print("✔ Success") |
|
else: |
|
print("Error preprocessing data... Make sure your data was preprocessed.") |
|
|
|
def train_index(exp_dir1, version19): |
|
exp_dir = f"logs/{exp_dir1}" |
|
os.makedirs(exp_dir, exist_ok=True) |
|
feature_dir = f"{exp_dir}/3_feature256" if version19 == "v1" else f"{exp_dir}/3_feature768" |
|
|
|
if not os.path.exists(feature_dir): |
|
return "请先进行特征提取!" |
|
|
|
listdir_res = list(os.listdir(feature_dir)) |
|
if len(listdir_res) == 0: |
|
return "请先进行特征提取!" |
|
|
|
infos = [] |
|
npys = [] |
|
|
|
for name in sorted(listdir_res): |
|
phone = np.load(f"{feature_dir}/{name}") |
|
npys.append(phone) |
|
|
|
big_npy = np.concatenate(npys, 0) |
|
big_npy_idx = np.arange(big_npy.shape[0]) |
|
np.random.shuffle(big_npy_idx) |
|
big_npy = big_npy[big_npy_idx] |
|
|
|
if big_npy.shape[0] > 2e5: |
|
infos.append(f"Trying doing kmeans {big_npy.shape[0]} shape to 10k centers.") |
|
yield "\n".join(infos) |
|
|
|
try: |
|
big_npy = MiniBatchKMeans( |
|
n_clusters=10000, |
|
verbose=True, |
|
batch_size=256, |
|
compute_labels=False, |
|
init="random" |
|
).fit(big_npy).cluster_centers_ |
|
except: |
|
info = traceback.format_exc() |
|
infos.append(info) |
|
yield "\n".join(infos) |
|
|
|
np.save(f"{exp_dir}/total_fea.npy", big_npy) |
|
n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39) |
|
infos.append(f"{big_npy.shape},{n_ivf}") |
|
yield "\n".join(infos) |
|
|
|
index = faiss.index_factory(256 if version19 == "v1" else 768, f"IVF{n_ivf},Flat") |
|
infos.append("training") |
|
yield "\n".join(infos) |
|
|
|
index_ivf = faiss.extract_index_ivf(index) |
|
index_ivf.nprobe = 1 |
|
index.train(big_npy) |
|
faiss.write_index( |
|
index, |
|
f"{exp_dir}/trained_IVF{n_ivf}_Flat_nprobe_{index_ivf.nprobe}_{exp_dir1}_{version19}.index" |
|
) |
|
|
|
infos.append("adding") |
|
yield "\n".join(infos) |
|
|
|
batch_size_add = 8192 |
|
for i in range(0, big_npy.shape[0], batch_size_add): |
|
index.add(big_npy[i: i + batch_size_add]) |
|
|
|
faiss.write_index( |
|
index, |
|
f"{exp_dir}/added_IVF{n_ivf}_Flat_nprobe_{index_ivf.nprobe}_{exp_dir1}_{version19}.index" |
|
) |
|
|
|
infos.append(f"成功构建索引,added_IVF{n_ivf}_Flat_nprobe_{index_ivf.nprobe}_{exp_dir1}_{version19}.index") |
|
|
|
training_log = train_index(model_name, 'v2') |
|
|
|
for line in training_log: |
|
print(line) |
|
if 'adding' in line: |
|
print("✔ Success") |
|
|