import os import gradio as gr from pytube import YouTube from pydub import AudioSegment import numpy as np import faiss from sklearn.cluster import MiniBatchKMeans import traceback from random import shuffle import json import pathlib from subprocess import Popen, PIPE, STDOUT # Define the function for training def click_train( exp_dir1, sr2, if_f0_3, spk_id5, save_epoch10, total_epoch11, batch_size12, if_save_latest13, pretrained_G14, pretrained_D15, gpus16, if_cache_gpu17, if_save_every_weights18, version19, ): now_dir = os.getcwd() exp_dir = f"{now_dir}/logs/{exp_dir1}" os.makedirs(exp_dir, exist_ok=True) gt_wavs_dir = f"{exp_dir}/0_gt_wavs" feature_dir = ( f"{exp_dir}/3_feature256" if version19 == "v1" else f"{exp_dir}/3_feature768" ) if if_f0_3: f0_dir = f"{exp_dir}/2a_f0" f0nsf_dir = f"{exp_dir}/2b-f0nsf" names = ( set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) & set([name.split(".")[0] for name in os.listdir(feature_dir)]) & set([name.split(".")[0] for name in os.listdir(f0_dir)]) & set([name.split(".")[0] for name in os.listdir(f0nsf_dir)]) ) else: names = set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) & set( [name.split(".")[0] for name in os.listdir(feature_dir)] ) opt = [] for name in names: if if_f0_3: opt.append( f"{gt_wavs_dir.replace('\\', '\\\\')}/{name}.wav|{feature_dir.replace('\\', '\\\\')}/{name}.npy|{f0_dir.replace('\\', '\\\\')}/{name}.wav.npy|{f0nsf_dir.replace('\\', '\\\\')}/{name}.wav.npy|{spk_id5}" ) else: opt.append( f"{gt_wavs_dir.replace('\\', '\\\\')}/{name}.wav|{feature_dir.replace('\\', '\\\\')}/{name}.npy|{spk_id5}" ) fea_dim = 256 if version19 == "v1" else 768 if if_f0_3: for _ in range(2): opt.append( f"{now_dir}/logs/mute/0_gt_wavs/mute{sr2}.wav|{now_dir}/logs/mute/3_feature{fea_dim}/mute.npy|{now_dir}/logs/mute/2a_f0/mute.wav.npy|{now_dir}/logs/mute/2b-f0nsf/mute.wav.npy|{spk_id5}" ) else: for _ in range(2): opt.append( f"{now_dir}/logs/mute/0_gt_wavs/mute{sr2}.wav|{now_dir}/logs/mute/3_feature{fea_dim}/mute.npy|{spk_id5}" ) shuffle(opt) with open(f"{exp_dir}/filelist.txt", "w") as f: f.write("\n".join(opt)) print("Write filelist done") print("Use gpus:", str(gpus16)) if pretrained_G14 == "": print("No pretrained Generator") if pretrained_D15 == "": print("No pretrained Discriminator") if version19 == "v1" or sr2 == "40k": config_path = f"configs/v1/{sr2}.json" else: config_path = f"configs/v2/{sr2}.json" config_save_path = os.path.join(exp_dir, "config.json") if not pathlib.Path(config_save_path).exists(): with open(config_save_path, "w", encoding="utf-8") as f: with open(config_path, "r") as config_file: config_data = json.load(config_file) json.dump( config_data, f, ensure_ascii=False, indent=4, sort_keys=True, ) f.write("\n") cmd = ( f'python infer/modules/train/train.py -e "{exp_dir1}" -sr {sr2} -f0 {1 if if_f0_3 else 0} -bs {batch_size12} -g {gpus16} -te {total_epoch11} -se {save_epoch10} {"-pg " + pretrained_G14 if pretrained_G14 != "" else ""} {"-pd " + pretrained_D15 if pretrained_D15 != "" else ""} -l {1 if if_save_latest13 else 0} -c {1 if if_cache_gpu17 else 0} -sw {1 if if_save_every_weights18 else 0} -v {version19}' ) p = Popen(cmd, shell=True, cwd=now_dir, stdout=PIPE, stderr=STDOUT, bufsize=1, universal_newlines=True) for line in p.stdout: print(line.strip()) p.wait() return "After the training is completed, you can view the console training log or train.log under the experiment folder" def calculate_audio_duration(file_path): duration_seconds = len(AudioSegment.from_file(file_path)) / 1000.0 return duration_seconds def youtube_to_wav(url, dataset_folder): try: yt = YouTube(url).streams.get_audio_only().download(output_path=dataset_folder) mp4_path = os.path.join(dataset_folder, 'audio.mp4') wav_path = os.path.join(dataset_folder, 'audio.wav') os.rename(yt, mp4_path) os.system(f'ffmpeg -i {mp4_path} -acodec pcm_s16le -ar 44100 {wav_path}') os.remove(mp4_path) return f'Audio downloaded and converted to WAV: {wav_path}' except Exception as e: return f"Error: {e}" def create_training_files(model_name, dataset_folder, youtube_link): if youtube_link: youtube_to_wav(youtube_link, dataset_folder) if not os.listdir(dataset_folder): return "Your dataset folder is empty." os.makedirs(f'./logs/{model_name}', exist_ok=True) os.system(f'python infer/modules/train/preprocess.py {dataset_folder} 32000 2 ./logs/{model_name} False 3.0 > /dev/null 2>&1') with open(f'./logs/{model_name}/preprocess.log', 'r') as f: if 'end preprocess' in f.read(): return "Preprocessing Success" else: return "Error preprocessing data... Make sure your dataset folder is correct." def extract_features(model_name, f0method): os.system(f'python infer/modules/train/extract/extract_f0_rmvpe.py 1 0 0 ./logs/{model_name} True' if f0method == "rmvpe_gpu" else f'python infer/modules/train/extract/extract_f0_print.py ./logs/{model_name} 2 {f0method}') os.system(f'python infer/modules/train/extract_feature_print.py cuda:0 1 0 ./logs/{model_name} v2 True') with open(f'./logs/{model_name}/extract_f0_feature.log', 'r') as f: if 'all-feature-done' in f.read(): return "Feature Extraction Success" else: return "Error in feature extraction... Make sure your data was preprocessed." def train_index(exp_dir1, version19): exp_dir = f"logs/{exp_dir1}" os.makedirs(exp_dir, exist_ok=True) feature_dir = f"{exp_dir}/3_feature256" if version19 == "v1" else f"{exp_dir}/3_feature768" if not os.path.exists(feature_dir): return "Please perform feature extraction first!" listdir_res = list(os.listdir(feature_dir)) if len(listdir_res) == 0: return "Please perform feature extraction first!" infos = [] npys = [] for name in sorted(listdir_res): phone = np.load(f"{feature_dir}/{name}") npys.append(phone) big_npy = np.concatenate(npys, 0) big_npy_idx = np.arange(big_npy.shape[0]) np.random.shuffle(big_npy_idx) big_npy = big_npy[big_npy_idx] if big_npy.shape[0] > 2e5: infos.append(f"Trying k-means with {big_npy.shape[0]} to 10k centers.") try: big_npy = MiniBatchKMeans( n_clusters=10000, verbose=True, batch_size=256, compute_labels=False, init="random", ).fit(big_npy).cluster_centers_ except: info = traceback.format_exc() infos.append(info) return "\n".join(infos) np.save(f"{exp_dir}/total_fea.npy", big_npy) n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39) infos.append(f"{big_npy.shape},{n_ivf}") index = faiss.index_factory(256 if version19 == "v1" else 768, f"IVF{n_ivf},Flat") infos.append("Training index") index_ivf = faiss.extract_index_ivf(index) index_ivf.nprobe = 1 index.train(big_npy) faiss.write_index(index, f"{exp_dir}/trained_IVF{n_ivf}_Flat_nprobe_{index_ivf.nprobe}_{exp_dir1}_{version19}.index") infos.append("Adding to index") batch_size_add = 8192 for i in range(0, big_npy.shape[0], batch_size_add): index.add(big_npy[i: i + batch_size_add]) faiss.write_index(index, f"{exp_dir}/added_IVF{n_ivf}_Flat_nprobe_{index_ivf.nprobe}_{exp_dir1}_{version19}.index") infos.append(f"Successfully built index: added_IVF{n_ivf}_Flat_nprobe_{index_ivf.nprobe}_{exp_dir1}_{version19}.index") return "\n".join(infos) with gr.Blocks() as demo: with gr.Tab("Training"): with gr.Tab("CREATE TRANING FILES - This will process the data, extract the features and create your index file for you!"): with gr.Row(): model_name = gr.Textbox(label="Model Name", value="My-Voice") dataset_folder = gr.Textbox(label="Dataset Folder", value="/content/dataset") youtube_link = gr.Textbox(label="YouTube Link (optional)") with gr.Row(): start_button = gr.Button("Create Training Files") f0method = gr.Dropdown(["pm", "harvest", "rmvpe", "rmvpe_gpu"], label="F0 Method", value="rmvpe_gpu") extract_button = gr.Button("Extract Features") train_button = gr.Button("Train Index") output = gr.Textbox(label="Output") start_button.click(create_training_files, inputs=[model_name, dataset_folder, youtube_link], outputs=output) extract_button.click(extract_features, inputs=[model_name, f0method], outputs=output) train_button.click(train_index, inputs=[model_name, "v2"], outputs=output) with gr.Tab("train"): exp_dir1 = gr.Textbox(label="Experiment Directory", value="mymodel") sr2 = gr.Dropdown(choices=["32k", "40k", "48k"], label="Sample Rate", value="32k") if_f0_3 = gr.Checkbox(label="Use F0", value=True) spk_id5 = gr.Number(label="Speaker ID", value=0) save_epoch10 = gr.Slider(label="Save Frequency", minimum=5, maximum=50, step=5, value=25) total_epoch11 = gr.Slider(label="Total Epochs", minimum=10, maximum=2000, step=10, value=500) batch_size12 = gr.Slider(label="Batch Size", minimum=1, maximum=20, step=1, value=8) if_save_latest13 = gr.Checkbox(label="Save Latest", value=True) pretrained_G14 = gr.Textbox(label="Pretrained Generator File", value="/content/pre/assets/pretrained_v2/f0Ov2Super32kG.pth") pretrained_D15 = gr.Textbox(label="Pretrained Discriminator File", value="/content/pre/assets/pretrained_v2/f0Ov2Super32kD.pth") gpus16 = gr.Number(label="GPUs", value=0) if_cache_gpu17 = gr.Checkbox(label="Cache GPU", value=False) if_save_every_weights18 = gr.Checkbox(label="Save Every Weights", value=True) version19 = gr.Textbox(label="Version", value="v2") training_log = gr.Textbox(label="Training Log", interactive=False) train_button = gr.Button("Start Training") train_button.click( fn=click_train, inputs=[ exp_dir1, sr2, if_f0_3, spk_id5, save_epoch10, total_epoch11, batch_size12, if_save_latest13, pretrained_G14, pretrained_D15, gpus16, if_cache_gpu17, if_save_every_weights18, version19 ], outputs=training_log ) demo.launch() # beta state ......