import os import numpy as np import faiss from sklearn.cluster import MiniBatchKMeans import traceback # Set the working directory os.chdir('/content/RVC') # Parameters model_name = 'My-Voice' dataset_folder = '/content/dataset' def calculate_audio_duration(file_path): # Placeholder function - replace with actual implementation return 0 # Check cache status based on audio duration try: duration = calculate_audio_duration(dataset_folder) cache = duration < 600 except: cache = False # Ensure dataset folder is not empty while len(os.listdir(dataset_folder)) < 1: input("Your dataset folder is empty.") os.makedirs(f'./logs/{model_name}', exist_ok=True) # Run the preprocessing script os.system(f'python infer/modules/train/preprocess.py {dataset_folder} 32000 2 ./logs/{model_name} False 3.0 > /dev/null 2>&1') with open(f'./logs/{model_name}/preprocess.log', 'r') as f: if 'end preprocess' in f.read(): print("✔ Success") else: print("Error preprocessing data... Make sure your dataset folder is correct.") f0method = "rmvpe_gpu" # Run the feature extraction scripts if f0method != "rmvpe_gpu": os.system(f'python infer/modules/train/extract/extract_f0_print.py ./logs/{model_name} 2 {f0method}') else: os.system(f'python infer/modules/train/extract/extract_f0_rmvpe.py 1 0 0 ./logs/{model_name} True') os.system(f'python infer/modules/train/extract_feature_print.py cuda:0 1 0 ./logs/{model_name} v2 True') with open(f'./logs/{model_name}/extract_f0_feature.log', 'r') as f: if 'all-feature-done' in f.read(): print("✔ Success") else: print("Error preprocessing data... Make sure your data was preprocessed.") def train_index(exp_dir1, version19): exp_dir = f"logs/{exp_dir1}" os.makedirs(exp_dir, exist_ok=True) feature_dir = f"{exp_dir}/3_feature256" if version19 == "v1" else f"{exp_dir}/3_feature768" if not os.path.exists(feature_dir): return "请先进行特征提取!" listdir_res = list(os.listdir(feature_dir)) if len(listdir_res) == 0: return "请先进行特征提取!" infos = [] npys = [] for name in sorted(listdir_res): phone = np.load(f"{feature_dir}/{name}") npys.append(phone) big_npy = np.concatenate(npys, 0) big_npy_idx = np.arange(big_npy.shape[0]) np.random.shuffle(big_npy_idx) big_npy = big_npy[big_npy_idx] if big_npy.shape[0] > 2e5: infos.append(f"Trying doing kmeans {big_npy.shape[0]} shape to 10k centers.") yield "\n".join(infos) try: big_npy = MiniBatchKMeans( n_clusters=10000, verbose=True, batch_size=256, compute_labels=False, init="random" ).fit(big_npy).cluster_centers_ except: info = traceback.format_exc() infos.append(info) yield "\n".join(infos) np.save(f"{exp_dir}/total_fea.npy", big_npy) n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39) infos.append(f"{big_npy.shape},{n_ivf}") yield "\n".join(infos) index = faiss.index_factory(256 if version19 == "v1" else 768, f"IVF{n_ivf},Flat") infos.append("training") yield "\n".join(infos) index_ivf = faiss.extract_index_ivf(index) index_ivf.nprobe = 1 index.train(big_npy) faiss.write_index( index, f"{exp_dir}/trained_IVF{n_ivf}_Flat_nprobe_{index_ivf.nprobe}_{exp_dir1}_{version19}.index" ) infos.append("adding") yield "\n".join(infos) batch_size_add = 8192 for i in range(0, big_npy.shape[0], batch_size_add): index.add(big_npy[i: i + batch_size_add]) faiss.write_index( index, f"{exp_dir}/added_IVF{n_ivf}_Flat_nprobe_{index_ivf.nprobe}_{exp_dir1}_{version19}.index" ) infos.append(f"成功构建索引,added_IVF{n_ivf}_Flat_nprobe_{index_ivf.nprobe}_{exp_dir1}_{version19}.index") training_log = train_index(model_name, 'v2') for line in training_log: print(line) if 'adding' in line: print("✔ Success")