HiTZ
/

Text2Text Generation
Transformers
PyTorch
mt5
medical
multilingual
medic
Inference Endpoints
ragerri commited on
Commit
6ba5d9c
1 Parent(s): 1e9fcac

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +15 -18
README.md CHANGED
@@ -21,30 +21,29 @@ tags:
21
  <p align="center">
22
  <br>
23
  <img src="http://www.ixa.eus/sites/default/files/anitdote.png" style="height: 250px;">
24
- <h2 align="center">MedMT5: An Open-Source Multilingual Text-to-Text LLM
25
- for The Medical Domain</h2>
26
  <br>
27
 
28
 
29
  # Model Card for MedMT5-large
30
 
31
  <p align="justify">
32
- We present MedMT5, the first open-source text-to-text multilingual model for the medical domain. MedMT5 is an encoder-decoder model developed by continuing the training of publicly available mT5 checkpoints on medical domain data for English, Spanish, French, and Italian.
33
  </p>
34
 
35
- - 📖 Paper: **Coming soon**
36
  - 🌐 Project Website: [https://univ-cotedazur.eu/antidote](https://univ-cotedazur.eu/antidote)
37
 
38
 
39
 
40
 
41
  <table border="1" cellspacing="0" cellpadding="5">
42
- <caption>Pre-Training settings for MedMT5.</caption>
43
  <thead>
44
  <tr>
45
  <th></th>
46
- <th>MedMT5-Large (<a href="https://huggingface.co/HiTZ/Medical-mT5-large">HiTZ/Medical-mT5-large</a>)</th>
47
- <th>MedMT5-XL (<a href="https://huggingface.co/HiTZ/Medical-mT5-xl">HiTZ/Medical-mT5-xl</a>)</th>
48
  </tr>
49
  </thead>
50
  <tbody>
@@ -110,13 +109,13 @@ We present MedMT5, the first open-source text-to-text multilingual model for the
110
  # Model Description
111
 
112
  - **Developed by**: Iker García-Ferrero, Rodrigo Agerri, Aitziber Atutxa Salazar, Elena Cabrio, Iker de la Iglesia, Alberto Lavelli, Bernardo Magnini, Benjamin Molinet, Johana Ramirez-Romero, German Rigau, Jose Maria Villa-Gonzalez, Serena Villata and Andrea Zaninello
113
- - **Contact**: [Iker García-Ferrero](https://ikergarcia1996.github.io/Iker-Garcia-Ferrero/)
114
  - **Website**: [https://univ-cotedazur.eu/antidote](https://univ-cotedazur.eu/antidote)
115
  - **Funding**: CHIST-ERA XAI 2019 call. Antidote (PCI2020-120717-2) funded by MCIN/AEI /10.13039/501100011033 and by European Union NextGenerationEU/PRTR
116
  - **Model type**: text2text-generation
117
  - **Language(s) (NLP)**: English, Spanish, French, Italian
118
  - **License**: apache-2.0
119
- - **Finetuned from model**: MT5
120
 
121
  ## How to Get Started with the Model
122
 
@@ -136,9 +135,9 @@ The model has been trained using the T5 masked language modeling tasks. You need
136
  <img src="https://miro.medium.com/v2/0*yeXSc6Qs-SGKDzZP.png" style="height: 250px;">
137
  <br>
138
 
139
- ### MedMT5 for Sequence Labelling
140
 
141
- If you want to use MedMT5 for Sequence Labeling, we recommend you use this code: https://github.com/ikergarcia1996/Sequence-Labeling-LLMs
142
 
143
  ## Training Data
144
 
@@ -294,18 +293,16 @@ If you want to use MedMT5 for Sequence Labeling, we recommend you use this code:
294
 
295
  ## Ethical Statement
296
  <p align="justify">
297
- Our research in developing MedMT5, a multilingual text-to-text model for the medical domain, has ethical implications that we acknowledge. Firstly, the broader impact of this work lies in its potential to improve medical communication and understanding across languages, which can enhance healthcare access and quality for diverse linguistic communities. However, it also raises ethical considerations related to privacy and data security. To create our multilingual corpus, we have taken measures to anonymize and protect sensitive patient information, adhering to data protection regulations in each language's jurisdiction or deriving our data from sources that explicitly address this issue in line with privacy and safety regulations and guidelines. Furthermore, we are committed to transparency and fairness in our model's development and evaluation. We have worked to ensure that our benchmarks are representative and unbiased, and we will continue to monitor and address any potential biases in the future. Finally, we emphasize our commitment to open source by making our data, code, and models publicly available, with the aim of promoting collaboration within the research community.
298
  </p>
299
 
300
  ## Citation
301
 
302
- We will soon release a paper, but, for now, you can use:
303
-
304
  ```bibtext
305
- @misc{medMt5,
306
- title = "{MedMT5: An Open-Source Multilingual Text-to-Text LLM for The Medical Domain}",
307
  author = "{Iker García-Ferrero and Rodrigo Agerri and Aitziber Atutxa Salazar and Elena Cabrio and Iker de la Iglesia and Alberto Lavelli and Bernardo Magnini and Benjamin Molinet and Johana Ramirez-Romero and German Rigau and Jose Maria Villa-Gonzalez and Serena Villata and Andrea Zaninello}",
308
- url = "https://huggingface.co/collections/HiTZ/medical-mt5-65413b334cb81ed6dea67cfe",
309
- year = 2023 }
310
 
311
  ```
 
21
  <p align="center">
22
  <br>
23
  <img src="http://www.ixa.eus/sites/default/files/anitdote.png" style="height: 250px;">
24
+ <h2 align="center">Medical mT5: An Open-Source Multilingual Text-to-Text LLM for The Medical Domain</h2>
 
25
  <br>
26
 
27
 
28
  # Model Card for MedMT5-large
29
 
30
  <p align="justify">
31
+ We present Medical mT5, the first open-source text-to-text multilingual model for the medical domain. Medical mT5 is an encoder-decoder model developed by continuing the training of publicly available mT5 checkpoints on medical domain data for English, Spanish, French, and Italian.
32
  </p>
33
 
34
+ - 📖 Paper: [Medical mT5: An Open-Source Multilingual Text-to-Text LLM for The Medical Domain]()
35
  - 🌐 Project Website: [https://univ-cotedazur.eu/antidote](https://univ-cotedazur.eu/antidote)
36
 
37
 
38
 
39
 
40
  <table border="1" cellspacing="0" cellpadding="5">
41
+ <caption>Pre-Training settings for Medical MT5.</caption>
42
  <thead>
43
  <tr>
44
  <th></th>
45
+ <th>Medical mT5-Large (<a href="https://huggingface.co/HiTZ/Medical-mT5-large">HiTZ/Medical-mT5-large</a>)</th>
46
+ <th>Meical mT5-XL (<a href="https://huggingface.co/HiTZ/Medical-mT5-xl">HiTZ/Medical-mT5-xl</a>)</th>
47
  </tr>
48
  </thead>
49
  <tbody>
 
109
  # Model Description
110
 
111
  - **Developed by**: Iker García-Ferrero, Rodrigo Agerri, Aitziber Atutxa Salazar, Elena Cabrio, Iker de la Iglesia, Alberto Lavelli, Bernardo Magnini, Benjamin Molinet, Johana Ramirez-Romero, German Rigau, Jose Maria Villa-Gonzalez, Serena Villata and Andrea Zaninello
112
+ - **Contact**: [Iker García-Ferrero](https://ikergarcia1996.github.io/Iker-Garcia-Ferrero/) and [Rodrigo Agerri](https://ragerri.github.io/)
113
  - **Website**: [https://univ-cotedazur.eu/antidote](https://univ-cotedazur.eu/antidote)
114
  - **Funding**: CHIST-ERA XAI 2019 call. Antidote (PCI2020-120717-2) funded by MCIN/AEI /10.13039/501100011033 and by European Union NextGenerationEU/PRTR
115
  - **Model type**: text2text-generation
116
  - **Language(s) (NLP)**: English, Spanish, French, Italian
117
  - **License**: apache-2.0
118
+ - **Finetuned from model**: mT5
119
 
120
  ## How to Get Started with the Model
121
 
 
135
  <img src="https://miro.medium.com/v2/0*yeXSc6Qs-SGKDzZP.png" style="height: 250px;">
136
  <br>
137
 
138
+ ### Medical mT5 for Sequence Labelling
139
 
140
+ If you want to use Medical mT5 for Sequence Labeling, we recommend you use this code: https://github.com/ikergarcia1996/Sequence-Labeling-LLMs
141
 
142
  ## Training Data
143
 
 
293
 
294
  ## Ethical Statement
295
  <p align="justify">
296
+ Our research in developing Medical mT5, a multilingual text-to-text model for the medical domain, has ethical implications that we acknowledge. Firstly, the broader impact of this work lies in its potential to improve medical communication and understanding across languages, which can enhance healthcare access and quality for diverse linguistic communities. However, it also raises ethical considerations related to privacy and data security. To create our multilingual corpus, we have taken measures to anonymize and protect sensitive patient information, adhering to data protection regulations in each language's jurisdiction or deriving our data from sources that explicitly address this issue in line with privacy and safety regulations and guidelines. Furthermore, we are committed to transparency and fairness in our model's development and evaluation. We have worked to ensure that our benchmarks are representative and unbiased, and we will continue to monitor and address any potential biases in the future. Finally, we emphasize our commitment to open source by making our data, code, and models publicly available, with the aim of promoting collaboration within the research community.
297
  </p>
298
 
299
  ## Citation
300
 
 
 
301
  ```bibtext
302
+ @inproceedings{medMt5,
303
+ title = "{{Medical mT5: An Open-Source Multilingual Text-to-Text LLM for The Medical Domain}}",
304
  author = "{Iker García-Ferrero and Rodrigo Agerri and Aitziber Atutxa Salazar and Elena Cabrio and Iker de la Iglesia and Alberto Lavelli and Bernardo Magnini and Benjamin Molinet and Johana Ramirez-Romero and German Rigau and Jose Maria Villa-Gonzalez and Serena Villata and Andrea Zaninello}",
305
+ publisher = "Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING)",
306
+ year = 2024 }
307
 
308
  ```