update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
model-index:
|
6 |
+
- name: alpaca-lora-7b-en-pt-es-ca-eu-gl-at
|
7 |
+
results: []
|
8 |
+
---
|
9 |
+
|
10 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
11 |
+
should probably proofread and complete it, then remove this comment. -->
|
12 |
+
|
13 |
+
# alpaca-lora-7b-en-pt-es-ca-eu-gl-at
|
14 |
+
|
15 |
+
This model is a fine-tuned version of [decapoda-research/llama-7b-hf](https://huggingface.co/decapoda-research/llama-7b-hf) on the None dataset.
|
16 |
+
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 1.0667
|
18 |
+
|
19 |
+
## Model description
|
20 |
+
|
21 |
+
More information needed
|
22 |
+
|
23 |
+
## Intended uses & limitations
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Training and evaluation data
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training procedure
|
32 |
+
|
33 |
+
### Training hyperparameters
|
34 |
+
|
35 |
+
The following hyperparameters were used during training:
|
36 |
+
- learning_rate: 0.0003
|
37 |
+
- train_batch_size: 26
|
38 |
+
- eval_batch_size: 26
|
39 |
+
- seed: 42
|
40 |
+
- distributed_type: multi-GPU
|
41 |
+
- gradient_accumulation_steps: 5
|
42 |
+
- total_train_batch_size: 130
|
43 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
+
- lr_scheduler_type: cosine
|
45 |
+
- lr_scheduler_warmup_ratio: 0.03
|
46 |
+
- num_epochs: 1
|
47 |
+
- mixed_precision_training: Native AMP
|
48 |
+
|
49 |
+
### Training results
|
50 |
+
|
51 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
52 |
+
|:-------------:|:-----:|:----:|:---------------:|
|
53 |
+
| 1.3772 | 0.04 | 100 | 1.3860 |
|
54 |
+
| 1.3043 | 0.07 | 200 | 1.2904 |
|
55 |
+
| 1.2307 | 0.11 | 300 | 1.2409 |
|
56 |
+
| 1.2132 | 0.15 | 400 | 1.2086 |
|
57 |
+
| 1.1987 | 0.19 | 500 | 1.1854 |
|
58 |
+
| 1.1551 | 0.22 | 600 | 1.1660 |
|
59 |
+
| 1.1613 | 0.26 | 700 | 1.1516 |
|
60 |
+
| 1.144 | 0.3 | 800 | 1.1407 |
|
61 |
+
| 1.1494 | 0.34 | 900 | 1.1297 |
|
62 |
+
| 1.1072 | 0.37 | 1000 | 1.1196 |
|
63 |
+
| 1.1302 | 0.41 | 1100 | 1.1117 |
|
64 |
+
| 1.1074 | 0.45 | 1200 | 1.1058 |
|
65 |
+
| 1.0846 | 0.48 | 1300 | 1.0995 |
|
66 |
+
| 1.086 | 0.52 | 1400 | 1.0935 |
|
67 |
+
| 1.0793 | 0.56 | 1500 | 1.0889 |
|
68 |
+
| 1.0931 | 0.6 | 1600 | 1.0847 |
|
69 |
+
| 1.0905 | 0.63 | 1700 | 1.0804 |
|
70 |
+
| 1.0793 | 0.67 | 1800 | 1.0775 |
|
71 |
+
| 1.0795 | 0.71 | 1900 | 1.0748 |
|
72 |
+
| 1.0861 | 0.74 | 2000 | 1.0725 |
|
73 |
+
| 1.0881 | 0.78 | 2100 | 1.0705 |
|
74 |
+
| 1.0673 | 0.82 | 2200 | 1.0691 |
|
75 |
+
| 1.0626 | 0.86 | 2300 | 1.0681 |
|
76 |
+
| 1.0633 | 0.89 | 2400 | 1.0674 |
|
77 |
+
| 1.0601 | 0.93 | 2500 | 1.0669 |
|
78 |
+
| 1.0849 | 0.97 | 2600 | 1.0667 |
|
79 |
+
|
80 |
+
|
81 |
+
### Framework versions
|
82 |
+
|
83 |
+
- Transformers 4.28.0.dev0
|
84 |
+
- Pytorch 2.0.0+cu117
|
85 |
+
- Datasets 2.10.1
|
86 |
+
- Tokenizers 0.13.2
|