Initial commit
Browse files- README.md +1 -1
- a2c-AntBulletEnv-v0.zip +2 -2
- a2c-AntBulletEnv-v0/data +21 -21
- a2c-AntBulletEnv-v0/policy.optimizer.pth +1 -1
- a2c-AntBulletEnv-v0/policy.pth +1 -1
- a2c-AntBulletEnv-v0/system_info.txt +3 -3
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: AntBulletEnv-v0
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: AntBulletEnv-v0
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 1210.21 +/- 147.67
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-AntBulletEnv-v0.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8f2f09428ffd0160f310a11e17617e04341cdf4f0296f3949153504e7714ce42
|
3 |
+
size 129246
|
a2c-AntBulletEnv-v0/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {
|
@@ -32,12 +32,12 @@
|
|
32 |
"weight_decay": 0
|
33 |
}
|
34 |
},
|
35 |
-
"num_timesteps":
|
36 |
-
"_total_timesteps":
|
37 |
"_num_timesteps_at_start": 0,
|
38 |
"seed": null,
|
39 |
"action_noise": null,
|
40 |
-
"start_time":
|
41 |
"learning_rate": 0.00096,
|
42 |
"tensorboard_log": null,
|
43 |
"lr_schedule": {
|
@@ -46,7 +46,7 @@
|
|
46 |
},
|
47 |
"_last_obs": {
|
48 |
":type:": "<class 'numpy.ndarray'>",
|
49 |
-
":serialized:": "
|
50 |
},
|
51 |
"_last_episode_starts": {
|
52 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -54,22 +54,22 @@
|
|
54 |
},
|
55 |
"_last_original_obs": {
|
56 |
":type:": "<class 'numpy.ndarray'>",
|
57 |
-
":serialized:": "
|
58 |
},
|
59 |
"_episode_num": 0,
|
60 |
"use_sde": true,
|
61 |
"sde_sample_freq": -1,
|
62 |
-
"_current_progress_remaining":
|
63 |
"_stats_window_size": 100,
|
64 |
"ep_info_buffer": {
|
65 |
":type:": "<class 'collections.deque'>",
|
66 |
-
":serialized:": "
|
67 |
},
|
68 |
"ep_success_buffer": {
|
69 |
":type:": "<class 'collections.deque'>",
|
70 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
71 |
},
|
72 |
-
"_n_updates":
|
73 |
"n_steps": 8,
|
74 |
"gamma": 0.99,
|
75 |
"gae_lambda": 0.9,
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x78f87b841d80>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78f87b841e10>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78f87b841ea0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78f87b841f30>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x78f87b841fc0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x78f87b842050>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x78f87b8420e0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78f87b842170>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x78f87b842200>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78f87b842290>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78f87b842320>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x78f87b8423b0>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x78f87b850a00>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {
|
|
|
32 |
"weight_decay": 0
|
33 |
}
|
34 |
},
|
35 |
+
"num_timesteps": 2000000,
|
36 |
+
"_total_timesteps": 2000000,
|
37 |
"_num_timesteps_at_start": 0,
|
38 |
"seed": null,
|
39 |
"action_noise": null,
|
40 |
+
"start_time": 1690210156409285231,
|
41 |
"learning_rate": 0.00096,
|
42 |
"tensorboard_log": null,
|
43 |
"lr_schedule": {
|
|
|
46 |
},
|
47 |
"_last_obs": {
|
48 |
":type:": "<class 'numpy.ndarray'>",
|
49 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAOLHLr+ysrm/gNKyvuZjir/6KXA/91dWv9L83j8ka7s+9eyDP6068rwpi2s/YxzWvyUR2L+y/Eo7ar8Qvxehtb+VmM+/rqigO2p5Gz81D0e+ByWDP2TD9zyk30C/Qr+evax5ST8E6Q3AkeHPPuqtNT+BVwu/zZC0P/ka8r4qyKS+23aIP03EFT82kYi/XGaZPmgoyL68t/s9XQImvz8MBz83kBs/drLqPrkmST9DycW9oEJbv9GxC77ODwe+5i91v7eEzb4vDFW+fLS9PhWQAr7qo6K/E+jmPuigHcDqrTU/kabzvl32Oz+Bqbw+aFWaPlBhET8+Bv89fGfovvReWT6dWhG/pNOGP0NrZL9Fc228GQiTv35/AD+Nouc+cw4rvexBwb/H6yg+Op8vPo9Djz+n84U/qxCmvrjzWD0Fa88+6qOivxPo5j6R4c8+6q01PyxFO78r6Zo/hd0NvrB6BUB7af8/rK1nPsp/8D1AUo2+QAzTPhp2KEDh2mE9ZeMgP4qJMj+mgvk/L3g9P3jOL0D8O80/OQmDvHbe4D4W8aU/OvFNv4tp2z824nS/h+4oPqx5ST8T6OY+keHPPplctL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
50 |
},
|
51 |
"_last_episode_starts": {
|
52 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
54 |
},
|
55 |
"_last_original_obs": {
|
56 |
":type:": "<class 'numpy.ndarray'>",
|
57 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAC0Tpo1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACATz5avQAAAACaLOy/AAAAAD+xDb0AAAAACm/wPwAAAABZdRk9AAAAAO0lAEAAAAAA9xegOwAAAACc6t2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlj2NQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgNBBlT0AAAAAB+HsvwAAAABEz6y8AAAAAMO83z8AAAAAmqObPQAAAAC1zeI/AAAAAPoPzb0AAAAAVUTwvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJIHcLYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBoS5Y9AAAAAIWx4r8AAAAAPTipvQAAAADIzvc/AAAAANX/eb0AAAAA0SjsPwAAAACC0ne9AAAAAFMn7b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqdB22AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA5IYNvQAAAABH4/W/AAAAAB686b0AAAAArbXqPwAAAAAPxJG7AAAAAC8LAUAAAAAAjeikPAAAAAAkh+u/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
58 |
},
|
59 |
"_episode_num": 0,
|
60 |
"use_sde": true,
|
61 |
"sde_sample_freq": -1,
|
62 |
+
"_current_progress_remaining": 0.0,
|
63 |
"_stats_window_size": 100,
|
64 |
"ep_info_buffer": {
|
65 |
":type:": "<class 'collections.deque'>",
|
66 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIhomDaoMrqMAWyUTegDjAF0lEdAqcFFbVz6rXV9lChoBkdAisOMlTm4iGgHTegDaAhHQKnBlGlQ/HJ1fZQoaAZHQI1TjoB7u2JoB03oA2gIR0CpxtcCPp6hdX2UKGgGR0CLpcnCO3lTaAdN6ANoCEdAqcjz4L1EmnV9lChoBkdAkT/MRYigTWgHTegDaAhHQKnO5s4T9Kp1fZQoaAZHQJRABrtVrARoB03oA2gIR0Cpz2VHe7+UdX2UKGgGR0COA8DTz/ZNaAdN6ANoCEdAqdWkU9IPLHV9lChoBkdAlIGMcuJ1q2gHTegDaAhHQKnXwQuEmIF1fZQoaAZHQJH3/9kz41xoB03oA2gIR0Cp3HwIUrTZdX2UKGgGR0CRo6YgaFVUaAdN6ANoCEdAqdzHBi1Aq3V9lChoBkdAionEZ75VO2gHTegDaAhHQKniD+bVjI91fZQoaAZHQIvhQtQKrrBoB03oA2gIR0Cp5EwyAQQMdX2UKGgGR0CMKBItlI3BaAdN6ANoCEdAqepKwMYuTXV9lChoBkdAg4dWd3B55mgHTegDaAhHQKnqulN1yNp1fZQoaAZHQJL+m5J9RaZoB03oA2gIR0Cp8NUQTVUddX2UKGgGR0CMbnHjIaLoaAdN6ANoCEdAqfLtcUuct3V9lChoBkdAkXHD/+85CGgHTegDaAhHQKn3oWLP2PF1fZQoaAZHQJAt1IBikO9oB03oA2gIR0Cp9++EqUeNdX2UKGgGR0CKEMCXhOxjaAdN6ANoCEdAqf0vSa3I/HV9lChoBkdAk+B5sO5J9WgHTegDaAhHQKn/Rs1sLv11fZQoaAZHQJEwljvuw5hoB03oA2gIR0CqBVnvUjLTdX2UKGgGR0CSiERWtEG8aAdN6ANoCEdAqgXJ8IAwPHV9lChoBkdAkAPNRiw0O2gHTegDaAhHQKoLwO8TSLJ1fZQoaAZHQJHYxOj7AL1oB03oA2gIR0CqDfcneBQOdX2UKGgGR0CUHFlwtJ4CaAdN6ANoCEdAqhLIl0HQhXV9lChoBkdAkKph4D9wWGgHTegDaAhHQKoTEpH7P6d1fZQoaAZHQJGa0q+ajN9oB03oA2gIR0CqGE/2K2rodX2UKGgGR0CQ7CTspoboaAdN6ANoCEdAqhp/GQ0XQHV9lChoBkdAkQN5x3mmtWgHTegDaAhHQKohInKGL1p1fZQoaAZHQItqorQPZqVoB03oA2gIR0CqIaAFxGUfdX2UKGgGR0CSJ1HxSYPYaAdN6ANoCEdAqieWevpyInV9lChoBkdAiKhUXgtOEmgHTegDaAhHQKopytmtheB1fZQoaAZHQJNHpId2gWdoB03oA2gIR0CqLo0hFEy+dX2UKGgGR0CNy966asp5aAdN6ANoCEdAqi7bn/1g6XV9lChoBkdAji6hVuJk5WgHTegDaAhHQKo0UXFcY651fZQoaAZHQIjqo3R5TqBoB03oA2gIR0CqNrJVKf4AdX2UKGgGR0CHTeEcKgIyaAdN6ANoCEdAqj2lR+BpYnV9lChoBkdAkdABMBZIQWgHTegDaAhHQKo+KcFyJbd1fZQoaAZHQIuPPr4WUKRoB03oA2gIR0CqQ3dbHIZJdX2UKGgGR0CSKO/IbOu8aAdN6ANoCEdAqkWg7JW/8HV9lChoBkdAiAu5s9B8hWgHTegDaAhHQKpKjQokRjB1fZQoaAZHQJL5c78vVVhoB03oA2gIR0CqStXcYZVGdX2UKGgGR0CQ3bnUUfxMaAdN6ANoCEdAqlAtT3qRl3V9lChoBkdAg9haeXiR4mgHTegDaAhHQKpSYmO2iL51fZQoaAZHQJHmkCV8kUtoB03oA2gIR0CqWV1g6U7kdX2UKGgGR0CLMWC4jKPoaAdN6ANoCEdAqlmpIpYs/nV9lChoBkdAkA4WOQyRCGgHTegDaAhHQKpe+KBNEgJ1fZQoaAZHQIpvZtvXK8toB03oA2gIR0CqYS++23KCdX2UKGgGR0CQJ9shPj4paAdN6ANoCEdAqmX6r/82rHV9lChoBkdAj5RlqzqrzWgHTegDaAhHQKpmRPMSsbN1fZQoaAZHQIi2IJPZZjhoB03oA2gIR0Cqa3oysS00dX2UKGgGR0CPmSivgWJraAdN6ANoCEdAqm3Tjm0VrXV9lChoBkdAjBDhSk0rLGgHTegDaAhHQKp0lEhq0t11fZQoaAZHQJA16POpsGhoB03oA2gIR0CqdOAiu+yrdX2UKGgGR0CQC5HXVbzLaAdN6ANoCEdAqnoR/oaDPHV9lChoBkdAjD/1y/9Hc2gHTegDaAhHQKp8NFPznRt1fZQoaAZHQIukdCHARChoB03oA2gIR0CqgOiRfWtmdX2UKGgGR0COM9tpmEoOaAdN6ANoCEdAqoEz1uivgXV9lChoBkdAkIh6DbrTpmgHTegDaAhHQKqGaLJCBwx1fZQoaAZHQItZhLTQVsVoB03oA2gIR0CqiNrmyPdVdX2UKGgGR0CS34RiPQv6aAdN6ANoCEdAqo+Uka/ATXV9lChoBkdAgoF8B+4LC2gHTegDaAhHQKqP5Vc2R7t1fZQoaAZHQI+qrA+IM0BoB03oA2gIR0CqlRYTK1XvdX2UKGgGR0CSn+xusLfDaAdN6ANoCEdAqpdEcENe+nV9lChoBkdAkeinxaxHG2gHTegDaAhHQKqcK+/QBxR1fZQoaAZHQIqz49eQdS5oB03oA2gIR0CqnHkvkBCEdX2UKGgGR0CSUfOs1baAaAdN6ANoCEdAqqG+GwiaAnV9lChoBkdAj9o/Ot4iYGgHTegDaAhHQKqkcbkwN9Z1fZQoaAZHQI8mu8K5TZRoB03oA2gIR0CqqwEw35vcdX2UKGgGR0CS08zHS4OMaAdN6ANoCEdAqqtUhHLA6HV9lChoBkdAj09nSOR1YGgHTegDaAhHQKqwnKp1ifB1fZQoaAZHQJB3moaUA1hoB03oA2gIR0Cqss/QjUutdX2UKGgGR0CKQOeMAFPjaAdN6ANoCEdAqre101ZTynV9lChoBkdAjyPf7SApa2gHTegDaAhHQKq4ApXp4bF1fZQoaAZHQJI50JOWSlpoB03oA2gIR0CqvVggow23dX2UKGgGR0CQjAInjQzDaAdN6ANoCEdAqsCL70nPV3V9lChoBkdAkIil/lQuVWgHTegDaAhHQKrG3yVfNRp1fZQoaAZHQJHIC/N7jT9oB03oA2gIR0CqxzNF8XvZdX2UKGgGR0CBkpCzC1qnaAdN6ANoCEdAqsyDzGxUvXV9lChoBkdAid3Chew9q2gHTegDaAhHQKrOqmqHXVd1fZQoaAZHQI8k5KjBVMpoB03oA2gIR0Cq02mXokiVdX2UKGgGR0CMwmAFPi1iaAdN6ANoCEdAqtO19v0h/3V9lChoBkdAkMdcZDRc/2gHTegDaAhHQKrY+rQPZqV1fZQoaAZHQIiDtEiMYMxoB03oA2gIR0Cq3DC04R29dX2UKGgGR0CO0X4Y77sOaAdN6ANoCEdAquI3OObRW3V9lChoBkdAhmNnV5KODWgHTegDaAhHQKrihn/T9bZ1fZQoaAZHQJAEBYoy9EloB03oA2gIR0Cq57aDXe3ydX2UKGgGR0CRwmz2exwAaAdN6ANoCEdAqunU32mHg3V9lChoBkdAkZdIlhPTHGgHTegDaAhHQKruhjWCmMx1fZQoaAZHQJMuMQNCqp9oB03oA2gIR0Cq7tJtzjm0dX2UKGgGR0CSHmSXt0FKaAdN6ANoCEdAqvQj349HMHV9lChoBkdAkhGqG5+Yt2gHTegDaAhHQKr3PIikftB1fZQoaAZHQJOAl34bjtJoB03oA2gIR0Cq/SnOKO1fdX2UKGgGR0CQLWTFl05maAdN6ANoCEdAqv10vEjxC3V9lChoBkdAiL9JfICEH2gHTegDaAhHQKsCsk5ZKWd1fZQoaAZHQJJ2DWqcVgxoB03oA2gIR0CrBMNg0CRwdX2UKGgGR0CODqIacZtOaAdN6ANoCEdAqwlS6J66a3V9lChoBkdAktmSqyWzGGgHTegDaAhHQKsJnRR/EwZ1fZQoaAZHQIzEUcfeUINoB03oA2gIR0CrDtObiIcjdX2UKGgGR0CRT+cSXdCWaAdN6ANoCEdAqxHu8yvcJ3VlLg=="
|
67 |
},
|
68 |
"ep_success_buffer": {
|
69 |
":type:": "<class 'collections.deque'>",
|
70 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
71 |
},
|
72 |
+
"_n_updates": 62500,
|
73 |
"n_steps": 8,
|
74 |
"gamma": 0.99,
|
75 |
"gae_lambda": 0.9,
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 56190
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cab70acdcf69aa94474e542b9524030c0544bfa8a3651fedb50a29b18b7c1b51
|
3 |
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 56894
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:519fbf35707c35b59007028e2e0b5235ed9cf8b175a45f548fd866b83985b7f0
|
3 |
size 56894
|
a2c-AntBulletEnv-v0/system_info.txt
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
-
- OS: Linux-5.
|
2 |
-
- Python: 3.10.
|
3 |
- Stable-Baselines3: 1.8.0
|
4 |
-
- PyTorch: 2.0.
|
5 |
- GPU Enabled: True
|
6 |
- Numpy: 1.22.4
|
7 |
- Gym: 0.21.0
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.6
|
3 |
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
- GPU Enabled: True
|
6 |
- Numpy: 1.22.4
|
7 |
- Gym: 0.21.0
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7efd2ab431c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efd2ab43250>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efd2ab432e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efd2ab43370>", "_build": "<function ActorCriticPolicy._build at 0x7efd2ab43400>", "forward": "<function ActorCriticPolicy.forward at 0x7efd2ab43490>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7efd2ab43520>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efd2ab435b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7efd2ab43640>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efd2ab436d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efd2ab43760>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7efd2ab437f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7efd2ab2fe00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2016, "_total_timesteps": 2000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1683299415815006651, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAOROsT8lQik/Tzk8P5NwgjpD2UM+XXmQPmN2/77Ts/y/KdH4PmQPnr02nQBAX/47vo4Wuz/tFB+7Suw+P1jg/T1/IZQ/cZsjv5QmEL/ZKmq/jaNHv7+JJryYmuE/ulgKvo+M3j5WDNI+2MuYv8/guD5azlo/qPMNP25VWD+5cwTAgf4YPq3XEj99kou/uI8nvyAwjr49g4A+9DHYvmYKAkDO1sm+gpibPqBbMz8QV3O+Fce8vw24lz2wJsK9AH4lP/kGKL8bV9Q+NDmRP04ru76PjN4+VgzSPtjLmL/P4Lg+iK9Dv9eWcL35WYM/JBB3PhPL/D6FgeQ+YtPHP5QDbj/9evk+qN+zvX4zmT9fHWm9mMM0v53+CUA8Rsy/IHUUPvINbr90fmg9UdbFvNY2WzwVG8s/579IvhQ2W78chg4/j4zePlYM0j6YdFY/z+C4Pg+jc7/SqNW+gVxHP+b9Xzxqg0Y+nWKQPgcqZD8BJxA/l5D4PmFvob3Xb9c+K0o2vsgVJ7852267A7Ibv7J8BD7Em5W/q63qO/MT+rwd6Lk9bL5Cvzmip7xhgl2/T8oKvo+M3j5WDNI+mHRWP8/guD6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACr8wSzAACAPwAAAAAAAAAAAAAAAAAAAAAAAACA75DVvQAAAABCXtq/AAAAAG3xgT0AAAAApUnyPwAAAAC0J169AAAAABjR9z8AAAAA66DsPQAAAACNsum/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWqrgtAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgC6Fo70AAAAAT/zrvwAAAABJweC9AAAAAKW+6D8AAAAAjiLSvQAAAABKr+E/AAAAADbv770AAAAA9o3ovwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJs0LYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICtLcq9AAAAAN445b8AAAAAlAjJvQAAAAAVWPw/AAAAAItHC74AAAAApcT/PwAAAADX8gA+AAAAANlv+r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACOyCi1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAwAIYvQAAAACzxvC/AAAAAMGwjr0AAAAA7RznPwAAAABMxeS9AAAAACSh/T8AAAAA/NEAvgAAAACcOu6/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": -0.008000000000000007, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVvgAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQEYEX2ugYguMAWyUS1iMAXSUR0As/KHwgDA8dX2UKGgGR0ATB0uDjBEbaAdLFWgIR0AtQFZgXuVpdX2UKGgGR0BRlq9kBjnWaAdLmmgIR0At2MHbAUL2dX2UKGgGR0BAWX/YJ3PiaAdLZ2gIR0AvzaFEiMYNdX2UKGgGR0BHZN6ol2NeaAdLXGgIR0AwxO1OTJQtdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 63, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x78f87b841d80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78f87b841e10>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78f87b841ea0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78f87b841f30>", "_build": "<function ActorCriticPolicy._build at 0x78f87b841fc0>", "forward": "<function ActorCriticPolicy.forward at 0x78f87b842050>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x78f87b8420e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78f87b842170>", "_predict": "<function ActorCriticPolicy._predict at 0x78f87b842200>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78f87b842290>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78f87b842320>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x78f87b8423b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78f87b850a00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690210156409285231, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAOLHLr+ysrm/gNKyvuZjir/6KXA/91dWv9L83j8ka7s+9eyDP6068rwpi2s/YxzWvyUR2L+y/Eo7ar8Qvxehtb+VmM+/rqigO2p5Gz81D0e+ByWDP2TD9zyk30C/Qr+evax5ST8E6Q3AkeHPPuqtNT+BVwu/zZC0P/ka8r4qyKS+23aIP03EFT82kYi/XGaZPmgoyL68t/s9XQImvz8MBz83kBs/drLqPrkmST9DycW9oEJbv9GxC77ODwe+5i91v7eEzb4vDFW+fLS9PhWQAr7qo6K/E+jmPuigHcDqrTU/kabzvl32Oz+Bqbw+aFWaPlBhET8+Bv89fGfovvReWT6dWhG/pNOGP0NrZL9Fc228GQiTv35/AD+Nouc+cw4rvexBwb/H6yg+Op8vPo9Djz+n84U/qxCmvrjzWD0Fa88+6qOivxPo5j6R4c8+6q01PyxFO78r6Zo/hd0NvrB6BUB7af8/rK1nPsp/8D1AUo2+QAzTPhp2KEDh2mE9ZeMgP4qJMj+mgvk/L3g9P3jOL0D8O80/OQmDvHbe4D4W8aU/OvFNv4tp2z824nS/h+4oPqx5ST8T6OY+keHPPplctL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAC0Tpo1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACATz5avQAAAACaLOy/AAAAAD+xDb0AAAAACm/wPwAAAABZdRk9AAAAAO0lAEAAAAAA9xegOwAAAACc6t2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlj2NQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgNBBlT0AAAAAB+HsvwAAAABEz6y8AAAAAMO83z8AAAAAmqObPQAAAAC1zeI/AAAAAPoPzb0AAAAAVUTwvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJIHcLYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBoS5Y9AAAAAIWx4r8AAAAAPTipvQAAAADIzvc/AAAAANX/eb0AAAAA0SjsPwAAAACC0ne9AAAAAFMn7b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqdB22AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA5IYNvQAAAABH4/W/AAAAAB686b0AAAAArbXqPwAAAAAPxJG7AAAAAC8LAUAAAAAAjeikPAAAAAAkh+u/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIhomDaoMrqMAWyUTegDjAF0lEdAqcFFbVz6rXV9lChoBkdAisOMlTm4iGgHTegDaAhHQKnBlGlQ/HJ1fZQoaAZHQI1TjoB7u2JoB03oA2gIR0CpxtcCPp6hdX2UKGgGR0CLpcnCO3lTaAdN6ANoCEdAqcjz4L1EmnV9lChoBkdAkT/MRYigTWgHTegDaAhHQKnO5s4T9Kp1fZQoaAZHQJRABrtVrARoB03oA2gIR0Cpz2VHe7+UdX2UKGgGR0COA8DTz/ZNaAdN6ANoCEdAqdWkU9IPLHV9lChoBkdAlIGMcuJ1q2gHTegDaAhHQKnXwQuEmIF1fZQoaAZHQJH3/9kz41xoB03oA2gIR0Cp3HwIUrTZdX2UKGgGR0CRo6YgaFVUaAdN6ANoCEdAqdzHBi1Aq3V9lChoBkdAionEZ75VO2gHTegDaAhHQKniD+bVjI91fZQoaAZHQIvhQtQKrrBoB03oA2gIR0Cp5EwyAQQMdX2UKGgGR0CMKBItlI3BaAdN6ANoCEdAqepKwMYuTXV9lChoBkdAg4dWd3B55mgHTegDaAhHQKnqulN1yNp1fZQoaAZHQJL+m5J9RaZoB03oA2gIR0Cp8NUQTVUddX2UKGgGR0CMbnHjIaLoaAdN6ANoCEdAqfLtcUuct3V9lChoBkdAkXHD/+85CGgHTegDaAhHQKn3oWLP2PF1fZQoaAZHQJAt1IBikO9oB03oA2gIR0Cp9++EqUeNdX2UKGgGR0CKEMCXhOxjaAdN6ANoCEdAqf0vSa3I/HV9lChoBkdAk+B5sO5J9WgHTegDaAhHQKn/Rs1sLv11fZQoaAZHQJEwljvuw5hoB03oA2gIR0CqBVnvUjLTdX2UKGgGR0CSiERWtEG8aAdN6ANoCEdAqgXJ8IAwPHV9lChoBkdAkAPNRiw0O2gHTegDaAhHQKoLwO8TSLJ1fZQoaAZHQJHYxOj7AL1oB03oA2gIR0CqDfcneBQOdX2UKGgGR0CUHFlwtJ4CaAdN6ANoCEdAqhLIl0HQhXV9lChoBkdAkKph4D9wWGgHTegDaAhHQKoTEpH7P6d1fZQoaAZHQJGa0q+ajN9oB03oA2gIR0CqGE/2K2rodX2UKGgGR0CQ7CTspoboaAdN6ANoCEdAqhp/GQ0XQHV9lChoBkdAkQN5x3mmtWgHTegDaAhHQKohInKGL1p1fZQoaAZHQItqorQPZqVoB03oA2gIR0CqIaAFxGUfdX2UKGgGR0CSJ1HxSYPYaAdN6ANoCEdAqieWevpyInV9lChoBkdAiKhUXgtOEmgHTegDaAhHQKopytmtheB1fZQoaAZHQJNHpId2gWdoB03oA2gIR0CqLo0hFEy+dX2UKGgGR0CNy966asp5aAdN6ANoCEdAqi7bn/1g6XV9lChoBkdAji6hVuJk5WgHTegDaAhHQKo0UXFcY651fZQoaAZHQIjqo3R5TqBoB03oA2gIR0CqNrJVKf4AdX2UKGgGR0CHTeEcKgIyaAdN6ANoCEdAqj2lR+BpYnV9lChoBkdAkdABMBZIQWgHTegDaAhHQKo+KcFyJbd1fZQoaAZHQIuPPr4WUKRoB03oA2gIR0CqQ3dbHIZJdX2UKGgGR0CSKO/IbOu8aAdN6ANoCEdAqkWg7JW/8HV9lChoBkdAiAu5s9B8hWgHTegDaAhHQKpKjQokRjB1fZQoaAZHQJL5c78vVVhoB03oA2gIR0CqStXcYZVGdX2UKGgGR0CQ3bnUUfxMaAdN6ANoCEdAqlAtT3qRl3V9lChoBkdAg9haeXiR4mgHTegDaAhHQKpSYmO2iL51fZQoaAZHQJHmkCV8kUtoB03oA2gIR0CqWV1g6U7kdX2UKGgGR0CLMWC4jKPoaAdN6ANoCEdAqlmpIpYs/nV9lChoBkdAkA4WOQyRCGgHTegDaAhHQKpe+KBNEgJ1fZQoaAZHQIpvZtvXK8toB03oA2gIR0CqYS++23KCdX2UKGgGR0CQJ9shPj4paAdN6ANoCEdAqmX6r/82rHV9lChoBkdAj5RlqzqrzWgHTegDaAhHQKpmRPMSsbN1fZQoaAZHQIi2IJPZZjhoB03oA2gIR0Cqa3oysS00dX2UKGgGR0CPmSivgWJraAdN6ANoCEdAqm3Tjm0VrXV9lChoBkdAjBDhSk0rLGgHTegDaAhHQKp0lEhq0t11fZQoaAZHQJA16POpsGhoB03oA2gIR0CqdOAiu+yrdX2UKGgGR0CQC5HXVbzLaAdN6ANoCEdAqnoR/oaDPHV9lChoBkdAjD/1y/9Hc2gHTegDaAhHQKp8NFPznRt1fZQoaAZHQIukdCHARChoB03oA2gIR0CqgOiRfWtmdX2UKGgGR0COM9tpmEoOaAdN6ANoCEdAqoEz1uivgXV9lChoBkdAkIh6DbrTpmgHTegDaAhHQKqGaLJCBwx1fZQoaAZHQItZhLTQVsVoB03oA2gIR0CqiNrmyPdVdX2UKGgGR0CS34RiPQv6aAdN6ANoCEdAqo+Uka/ATXV9lChoBkdAgoF8B+4LC2gHTegDaAhHQKqP5Vc2R7t1fZQoaAZHQI+qrA+IM0BoB03oA2gIR0CqlRYTK1XvdX2UKGgGR0CSn+xusLfDaAdN6ANoCEdAqpdEcENe+nV9lChoBkdAkeinxaxHG2gHTegDaAhHQKqcK+/QBxR1fZQoaAZHQIqz49eQdS5oB03oA2gIR0CqnHkvkBCEdX2UKGgGR0CSUfOs1baAaAdN6ANoCEdAqqG+GwiaAnV9lChoBkdAj9o/Ot4iYGgHTegDaAhHQKqkcbkwN9Z1fZQoaAZHQI8mu8K5TZRoB03oA2gIR0CqqwEw35vcdX2UKGgGR0CS08zHS4OMaAdN6ANoCEdAqqtUhHLA6HV9lChoBkdAj09nSOR1YGgHTegDaAhHQKqwnKp1ifB1fZQoaAZHQJB3moaUA1hoB03oA2gIR0Cqss/QjUutdX2UKGgGR0CKQOeMAFPjaAdN6ANoCEdAqre101ZTynV9lChoBkdAjyPf7SApa2gHTegDaAhHQKq4ApXp4bF1fZQoaAZHQJI50JOWSlpoB03oA2gIR0CqvVggow23dX2UKGgGR0CQjAInjQzDaAdN6ANoCEdAqsCL70nPV3V9lChoBkdAkIil/lQuVWgHTegDaAhHQKrG3yVfNRp1fZQoaAZHQJHIC/N7jT9oB03oA2gIR0CqxzNF8XvZdX2UKGgGR0CBkpCzC1qnaAdN6ANoCEdAqsyDzGxUvXV9lChoBkdAid3Chew9q2gHTegDaAhHQKrOqmqHXVd1fZQoaAZHQI8k5KjBVMpoB03oA2gIR0Cq02mXokiVdX2UKGgGR0CMwmAFPi1iaAdN6ANoCEdAqtO19v0h/3V9lChoBkdAkMdcZDRc/2gHTegDaAhHQKrY+rQPZqV1fZQoaAZHQIiDtEiMYMxoB03oA2gIR0Cq3DC04R29dX2UKGgGR0CO0X4Y77sOaAdN6ANoCEdAquI3OObRW3V9lChoBkdAhmNnV5KODWgHTegDaAhHQKrihn/T9bZ1fZQoaAZHQJAEBYoy9EloB03oA2gIR0Cq57aDXe3ydX2UKGgGR0CRwmz2exwAaAdN6ANoCEdAqunU32mHg3V9lChoBkdAkZdIlhPTHGgHTegDaAhHQKruhjWCmMx1fZQoaAZHQJMuMQNCqp9oB03oA2gIR0Cq7tJtzjm0dX2UKGgGR0CSHmSXt0FKaAdN6ANoCEdAqvQj349HMHV9lChoBkdAkhGqG5+Yt2gHTegDaAhHQKr3PIikftB1fZQoaAZHQJOAl34bjtJoB03oA2gIR0Cq/SnOKO1fdX2UKGgGR0CQLWTFl05maAdN6ANoCEdAqv10vEjxC3V9lChoBkdAiL9JfICEH2gHTegDaAhHQKsCsk5ZKWd1fZQoaAZHQJJ2DWqcVgxoB03oA2gIR0CrBMNg0CRwdX2UKGgGR0CODqIacZtOaAdN6ANoCEdAqwlS6J66a3V9lChoBkdAktmSqyWzGGgHTegDaAhHQKsJnRR/EwZ1fZQoaAZHQIzEUcfeUINoB03oA2gIR0CrDtObiIcjdX2UKGgGR0CRT+cSXdCWaAdN6ANoCEdAqxHu8yvcJ3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 1210.207041256316, "std_reward": 147.67265313311904, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-24T15:48:20.010782"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2176
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:350debf59d8119441e3f4baa7b4e55c24723e4f02dd89e701ed39d33191d780c
|
3 |
size 2176
|