File size: 15,583 Bytes
9694117
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space (Tuple)\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Uses the CombinedExtractor\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x78f87b8424d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78f87b850b40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690213836450258229, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAmQbtPrICaL3XbhU/mQbtPrICaL3XbhU/mQbtPrICaL3XbhU/mQbtPrICaL3XbhU/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAATrzqvmUtwb8V0iM/YFCDv9dVq7/jDGi+/USgv2rgCj8RMoC+omJAvuiqkL3AtI4/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACZBu0+sgJovdduFT9a4Vs7ldzeu09hLDyZBu0+sgJovdduFT9a4Vs7ldzeu09hLDyZBu0+sgJovdduFT9a4Vs7ldzeu09hLDyZBu0+sgJovdduFT9a4Vs7ldzeu09hLDyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.46294096 -0.0566432   0.58372253]\n [ 0.46294096 -0.0566432   0.58372253]\n [ 0.46294096 -0.0566432   0.58372253]\n [ 0.46294096 -0.0566432   0.58372253]]", "desired_goal": "[[-0.4584679  -1.5091978   0.63992435]\n [-1.0258904  -1.3385571  -0.22661166]\n [-1.2521054   0.5424868  -0.25038198]\n [-0.18787625 -0.07063848  1.114891  ]]", "observation": "[[ 0.46294096 -0.0566432   0.58372253  0.00335511 -0.0068012   0.01052125]\n [ 0.46294096 -0.0566432   0.58372253  0.00335511 -0.0068012   0.01052125]\n [ 0.46294096 -0.0566432   0.58372253  0.00335511 -0.0068012   0.01052125]\n [ 0.46294096 -0.0566432   0.58372253  0.00335511 -0.0068012   0.01052125]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAoQzQPAJHAD6BrwA+RpQTvoKlbTy6y3E+5pEEPiabKL0BrjI8kVM/vfLGvrv8RWM+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]]", "desired_goal": "[[ 0.02539665  0.12527087  0.1256695 ]\n [-0.1441203   0.01450479  0.23612872]\n [ 0.12946281 -0.04116359  0.01090574]\n [-0.04671055 -0.00582206  0.22194666]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIV3ptNlYi+r+UhpRSlIwBbJRLMowBdJRHQKXuKLux8lZ1fZQoaAZoCWgPQwhPPj22ZaAFwJSGlFKUaBVLMmgWR0Cl7eiYTj//dX2UKGgGaAloD0MINzgR/dq6+r+UhpRSlGgVSzJoFkdApe2rVjI7vHV9lChoBmgJaA9DCLZoAdpWUw/AlIaUUpRoFUsyaBZHQKXtbnaFmFt1fZQoaAZoCWgPQwgYIxKFltUCwJSGlFKUaBVLMmgWR0Cl7ytIkJKKdX2UKGgGaAloD0MI4XzqWKW0FsCUhpRSlGgVSzJoFkdApe7rTOPeYXV9lChoBmgJaA9DCL6ItmPqfhXAlIaUUpRoFUsyaBZHQKXureokzGh1fZQoaAZoCWgPQwh8Rbde0+MAwJSGlFKUaBVLMmgWR0Cl7nDbzshQdX2UKGgGaAloD0MInpeKjXmd6b+UhpRSlGgVSzJoFkdApfA33JxNqXV9lChoBmgJaA9DCLaDEfsEEPa/lIaUUpRoFUsyaBZHQKXv9+PzWf91fZQoaAZoCWgPQwhaZ3xfXMoDwJSGlFKUaBVLMmgWR0Cl77qv3ai9dX2UKGgGaAloD0MIduJyvAIR+L+UhpRSlGgVSzJoFkdApe99zfaYeHV9lChoBmgJaA9DCO60NSIYxxXAlIaUUpRoFUsyaBZHQKXxPBPbfxd1fZQoaAZoCWgPQwgMkj6tot8DwJSGlFKUaBVLMmgWR0Cl8Pup0fYBdX2UKGgGaAloD0MIgzKNJhejB8CUhpRSlGgVSzJoFkdApfC+VgQYk3V9lChoBmgJaA9DCPeTMT7MXvC/lIaUUpRoFUsyaBZHQKXwgQxN7Bx1fZQoaAZoCWgPQwiA8Qwa+ufwv5SGlFKUaBVLMmgWR0Cl8jA4XGfgdX2UKGgGaAloD0MIA7StZp2hEMCUhpRSlGgVSzJoFkdApfHwDLbHqHV9lChoBmgJaA9DCLkANEqXng7AlIaUUpRoFUsyaBZHQKXxsvAXVLB1fZQoaAZoCWgPQwijBtMwfEQOwJSGlFKUaBVLMmgWR0Cl8XW1twaSdX2UKGgGaAloD0MIAyUFFsBU+b+UhpRSlGgVSzJoFkdApfMv8IiTuHV9lChoBmgJaA9DCBA+lGjJcxDAlIaUUpRoFUsyaBZHQKXy740uUUx1fZQoaAZoCWgPQwj8FwgCZCj2v5SGlFKUaBVLMmgWR0Cl8rJda+vhdX2UKGgGaAloD0MImIdM+RBU/r+UhpRSlGgVSzJoFkdApfJ1MPBi1HV9lChoBmgJaA9DCBAhrpy9sxLAlIaUUpRoFUsyaBZHQKX0M3XqZ+h1fZQoaAZoCWgPQwglXTP5ZmsQwJSGlFKUaBVLMmgWR0Cl8/M6q815dX2UKGgGaAloD0MIrhBWYwmr87+UhpRSlGgVSzJoFkdApfO2M6zVt3V9lChoBmgJaA9DCGg+527XCwTAlIaUUpRoFUsyaBZHQKXzeUBXCCV1fZQoaAZoCWgPQwjj4NIx5/kFwJSGlFKUaBVLMmgWR0Cl9UICMglodX2UKGgGaAloD0MI98snK4br+L+UhpRSlGgVSzJoFkdApfUBpWV/t3V9lChoBmgJaA9DCMHlsWZksALAlIaUUpRoFUsyaBZHQKX0xI2fkFR1fZQoaAZoCWgPQwjC9pMxPsz2v5SGlFKUaBVLMmgWR0Cl9IeiBXjmdX2UKGgGaAloD0MIZ3+g3Lbv/L+UhpRSlGgVSzJoFkdApfaEGu9vj3V9lChoBmgJaA9DCErP9BJjuQLAlIaUUpRoFUsyaBZHQKX2RI/7iyZ1fZQoaAZoCWgPQwgk1AypojgJwJSGlFKUaBVLMmgWR0Cl9giJO32FdX2UKGgGaAloD0MISdbh6Cqd/7+UhpRSlGgVSzJoFkdApfXMYj0L+nV9lChoBmgJaA9DCKvOaoE9ZgfAlIaUUpRoFUsyaBZHQKX4JS3solV1fZQoaAZoCWgPQwgDtK1mnbEDwJSGlFKUaBVLMmgWR0Cl9+XYcvM9dX2UKGgGaAloD0MIj4mUZvO49L+UhpRSlGgVSzJoFkdApfepWLgn+nV9lChoBmgJaA9DCDtREhJpm/K/lIaUUpRoFUsyaBZHQKX3bcu8K5V1fZQoaAZoCWgPQwjjp3FvfkP2v5SGlFKUaBVLMmgWR0Cl+byDZlFudX2UKGgGaAloD0MIlIlbBTFQAcCUhpRSlGgVSzJoFkdApfl9KsdT53V9lChoBmgJaA9DCNHMk2sKRAbAlIaUUpRoFUsyaBZHQKX5QG5+Ytx1fZQoaAZoCWgPQwiFzQAXZLsRwJSGlFKUaBVLMmgWR0Cl+QRB3RoidX2UKGgGaAloD0MIyECeXb61FcCUhpRSlGgVSzJoFkdApftRxR2r4nV9lChoBmgJaA9DCJpDUgslE/m/lIaUUpRoFUsyaBZHQKX7EkAxSHd1fZQoaAZoCWgPQwhMGw5LA78EwJSGlFKUaBVLMmgWR0Cl+tWE9MbndX2UKGgGaAloD0MIPwJ/+Pkv9b+UhpRSlGgVSzJoFkdApfqY9FF2FHV9lChoBmgJaA9DCG6GG/D5IfW/lIaUUpRoFUsyaBZHQKX9Blbu+h51fZQoaAZoCWgPQwilS/+SVMYOwJSGlFKUaBVLMmgWR0Cl/MbBGhEjdX2UKGgGaAloD0MIrWwf8pYr8r+UhpRSlGgVSzJoFkdApfyKxLTQV3V9lChoBmgJaA9DCGCvsOB+wPS/lIaUUpRoFUsyaBZHQKX8TpB5X2d1fZQoaAZoCWgPQwgkKelhaBUEwJSGlFKUaBVLMmgWR0Cl/i8UmD15dX2UKGgGaAloD0MIbVm+LsPfCcCUhpRSlGgVSzJoFkdApf3va11GLHV9lChoBmgJaA9DCLNAu0OKAf6/lIaUUpRoFUsyaBZHQKX9sntv4ud1fZQoaAZoCWgPQwitaHOc2xQSwJSGlFKUaBVLMmgWR0Cl/XU8/2TQdX2UKGgGaAloD0MIZeCAlq7g97+UhpRSlGgVSzJoFkdApf8qbDuSfXV9lChoBmgJaA9DCP36ITZYOOq/lIaUUpRoFUsyaBZHQKX+6j7ALzB1fZQoaAZoCWgPQwjhQEgWMEH6v5SGlFKUaBVLMmgWR0Cl/q1feDWcdX2UKGgGaAloD0MILPLrh9iABsCUhpRSlGgVSzJoFkdApf5wHVwxWXV9lChoBmgJaA9DCFzMzw1NmRLAlIaUUpRoFUsyaBZHQKYAIvIOpbV1fZQoaAZoCWgPQwgZc9cS8sHxv5SGlFKUaBVLMmgWR0Cl/+L+glF+dX2UKGgGaAloD0MIAK358ZeW/b+UhpRSlGgVSzJoFkdApf+l4HHFP3V9lChoBmgJaA9DCDhorz4e+hjAlIaUUpRoFUsyaBZHQKX/aTAWSEF1fZQoaAZoCWgPQwhQFymUhU8KwJSGlFKUaBVLMmgWR0CmATn58BuGdX2UKGgGaAloD0MIgGJkyRxrCsCUhpRSlGgVSzJoFkdApgD56+nIhnV9lChoBmgJaA9DCDXR56OMqBXAlIaUUpRoFUsyaBZHQKYAvKdxyXF1fZQoaAZoCWgPQwi78e7IWK0BwJSGlFKUaBVLMmgWR0CmAH9r433pdX2UKGgGaAloD0MIsaVHUz15FMCUhpRSlGgVSzJoFkdApgItE/jbSXV9lChoBmgJaA9DCCdO7ncoqgzAlIaUUpRoFUsyaBZHQKYB7KKYRd11fZQoaAZoCWgPQwhSuvQvSVUTwJSGlFKUaBVLMmgWR0CmAa9/BnBddX2UKGgGaAloD0MIbHcP0H15A8CUhpRSlGgVSzJoFkdApgFysySFG3V9lChoBmgJaA9DCO+tSExQ8xLAlIaUUpRoFUsyaBZHQKYDLEqlP8B1fZQoaAZoCWgPQwjQgHozaj73v5SGlFKUaBVLMmgWR0CmAuxjjJdTdX2UKGgGaAloD0MIVoLF4cyv8r+UhpRSlGgVSzJoFkdApgKvJeVs13V9lChoBmgJaA9DCEIlrmNcsQvAlIaUUpRoFUsyaBZHQKYCclenhsJ1fZQoaAZoCWgPQwgejUP9LuwDwJSGlFKUaBVLMmgWR0CmBCktdzGQdX2UKGgGaAloD0MIWHTrNT2oAcCUhpRSlGgVSzJoFkdApgPpCQcPv3V9lChoBmgJaA9DCF9gVijSXRDAlIaUUpRoFUsyaBZHQKYDrFZxJd11fZQoaAZoCWgPQwjYSBKEK6ADwJSGlFKUaBVLMmgWR0CmA29X9zfadX2UKGgGaAloD0MIvayJBb4CCcCUhpRSlGgVSzJoFkdApgUovHtF8XV9lChoBmgJaA9DCBgip6/n2xDAlIaUUpRoFUsyaBZHQKYE6E1VHWl1fZQoaAZoCWgPQwjNWZ9yTDYBwJSGlFKUaBVLMmgWR0CmBKsI/qxDdX2UKGgGaAloD0MImdh8XBvq/L+UhpRSlGgVSzJoFkdApgRuD8LronV9lChoBmgJaA9DCCP5SiAltgzAlIaUUpRoFUsyaBZHQKYGGc0cfeV1fZQoaAZoCWgPQwjzdRn+020GwJSGlFKUaBVLMmgWR0CmBdlYEGJOdX2UKGgGaAloD0MIkgiNYONaDMCUhpRSlGgVSzJoFkdApgWb7ZWaMXV9lChoBmgJaA9DCBvaAGxARAHAlIaUUpRoFUsyaBZHQKYFXvttygh1fZQoaAZoCWgPQwgbR6zFp+ABwJSGlFKUaBVLMmgWR0CmBxMUqQRxdX2UKGgGaAloD0MIumWH+Ift+7+UhpRSlGgVSzJoFkdApgbTQHAymHV9lChoBmgJaA9DCOT5DKg3wxHAlIaUUpRoFUsyaBZHQKYGlhttQ9B1fZQoaAZoCWgPQwiZYg6CjtYBwJSGlFKUaBVLMmgWR0CmBlj6vaDgdX2UKGgGaAloD0MIjKAxk6iX+r+UhpRSlGgVSzJoFkdApggFvAGjbnV9lChoBmgJaA9DCIXP1sHBnhbAlIaUUpRoFUsyaBZHQKYHxgflp491fZQoaAZoCWgPQwh/FeC7zXsFwJSGlFKUaBVLMmgWR0CmB4nF5v9+dX2UKGgGaAloD0MISiU8oddfCcCUhpRSlGgVSzJoFkdApgdNMh5gPXV9lChoBmgJaA9DCP1OkxlvK/S/lIaUUpRoFUsyaBZHQKYJAiBXjlx1fZQoaAZoCWgPQwgaw5ygTc78v5SGlFKUaBVLMmgWR0CmCMHr6ciGdX2UKGgGaAloD0MI7IhDNpBuA8CUhpRSlGgVSzJoFkdApgiE1wYLs3V9lChoBmgJaA9DCHOBy2PNyA3AlIaUUpRoFUsyaBZHQKYIR92ovSN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True  True  True]", "bounded_above": "[ True  True  True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}