HilbertS commited on
Commit
f4d617c
1 Parent(s): 391ba3f

Upload folder using huggingface_hub

Browse files
.summary/0/events.out.tfevents.1688485318.e07d25fd0378 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fb791f51c742df8a1c9e16b6364c072572916cf73423a3f96a4b5dff483d3a28
3
+ size 477121
README.md CHANGED
@@ -15,7 +15,7 @@ model-index:
15
  type: doom_health_gathering_supreme
16
  metrics:
17
  - type: mean_reward
18
- value: 8.86 +/- 5.05
19
  name: mean_reward
20
  verified: false
21
  ---
 
15
  type: doom_health_gathering_supreme
16
  metrics:
17
  - type: mean_reward
18
+ value: 9.20 +/- 6.90
19
  name: mean_reward
20
  verified: false
21
  ---
checkpoint_p0/best_000000923_3780608_reward_25.008.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f99eb7ed85310bb1ed9425b70f9c9391aab4a651382a677d483ab8c9dffabc3d
3
+ size 34928806
checkpoint_p0/checkpoint_000000874_3579904.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:32aa48de04dd532a12a43951fb5df18da0842821b98ec8cb3e5e1d6751d43e68
3
+ size 34929220
checkpoint_p0/checkpoint_000000978_4005888.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4cf53e5293626e176b0f248d7190abf8e64d8436f2862353319facf0fad5041e
3
+ size 34929220
config.json CHANGED
@@ -65,7 +65,7 @@
65
  "summaries_use_frameskip": true,
66
  "heartbeat_interval": 20,
67
  "heartbeat_reporting_interval": 600,
68
- "train_for_env_steps": 2000000,
69
  "train_for_seconds": 10000000000,
70
  "save_every_sec": 120,
71
  "keep_checkpoints": 2,
 
65
  "summaries_use_frameskip": true,
66
  "heartbeat_interval": 20,
67
  "heartbeat_reporting_interval": 600,
68
+ "train_for_env_steps": 4000000,
69
  "train_for_seconds": 10000000000,
70
  "save_every_sec": 120,
71
  "keep_checkpoints": 2,
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:c885fce2f959d628d1e5c5095cd9b5c61f11f9892ceb77046b737d7a7d6fe1e9
3
- size 16726721
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3cd28f20ee6e27ecd0b5908b6cc0b7023ae49b0c216d117bc4d9ea50b2dc22ac
3
+ size 17560860
sf_log.txt CHANGED
@@ -2951,3 +2951,829 @@ main_loop: 287.1521
2951
  [2023-07-04 15:40:08,709][18333] Avg episode rewards: #0: 19.761, true rewards: #0: 8.861
2952
  [2023-07-04 15:40:08,711][18333] Avg episode reward: 19.761, avg true_objective: 8.861
2953
  [2023-07-04 15:41:03,224][18333] Replay video saved to /content/train_dir/default_experiment/replay.mp4!
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2951
  [2023-07-04 15:40:08,709][18333] Avg episode rewards: #0: 19.761, true rewards: #0: 8.861
2952
  [2023-07-04 15:40:08,711][18333] Avg episode reward: 19.761, avg true_objective: 8.861
2953
  [2023-07-04 15:41:03,224][18333] Replay video saved to /content/train_dir/default_experiment/replay.mp4!
2954
+ [2023-07-04 15:41:06,055][18333] The model has been pushed to https://huggingface.co/HilbertS/rl_course_vizdoom_health_gathering_supreme
2955
+ [2023-07-04 15:41:58,356][18333] Environment doom_basic already registered, overwriting...
2956
+ [2023-07-04 15:41:58,358][18333] Environment doom_two_colors_easy already registered, overwriting...
2957
+ [2023-07-04 15:41:58,360][18333] Environment doom_two_colors_hard already registered, overwriting...
2958
+ [2023-07-04 15:41:58,364][18333] Environment doom_dm already registered, overwriting...
2959
+ [2023-07-04 15:41:58,365][18333] Environment doom_dwango5 already registered, overwriting...
2960
+ [2023-07-04 15:41:58,367][18333] Environment doom_my_way_home_flat_actions already registered, overwriting...
2961
+ [2023-07-04 15:41:58,369][18333] Environment doom_defend_the_center_flat_actions already registered, overwriting...
2962
+ [2023-07-04 15:41:58,370][18333] Environment doom_my_way_home already registered, overwriting...
2963
+ [2023-07-04 15:41:58,371][18333] Environment doom_deadly_corridor already registered, overwriting...
2964
+ [2023-07-04 15:41:58,373][18333] Environment doom_defend_the_center already registered, overwriting...
2965
+ [2023-07-04 15:41:58,375][18333] Environment doom_defend_the_line already registered, overwriting...
2966
+ [2023-07-04 15:41:58,376][18333] Environment doom_health_gathering already registered, overwriting...
2967
+ [2023-07-04 15:41:58,377][18333] Environment doom_health_gathering_supreme already registered, overwriting...
2968
+ [2023-07-04 15:41:58,379][18333] Environment doom_battle already registered, overwriting...
2969
+ [2023-07-04 15:41:58,380][18333] Environment doom_battle2 already registered, overwriting...
2970
+ [2023-07-04 15:41:58,381][18333] Environment doom_duel_bots already registered, overwriting...
2971
+ [2023-07-04 15:41:58,382][18333] Environment doom_deathmatch_bots already registered, overwriting...
2972
+ [2023-07-04 15:41:58,384][18333] Environment doom_duel already registered, overwriting...
2973
+ [2023-07-04 15:41:58,385][18333] Environment doom_deathmatch_full already registered, overwriting...
2974
+ [2023-07-04 15:41:58,386][18333] Environment doom_benchmark already registered, overwriting...
2975
+ [2023-07-04 15:41:58,387][18333] register_encoder_factory: <function make_vizdoom_encoder at 0x7f3d79124820>
2976
+ [2023-07-04 15:41:58,425][18333] Loading existing experiment configuration from /content/train_dir/default_experiment/config.json
2977
+ [2023-07-04 15:41:58,426][18333] Overriding arg 'train_for_env_steps' with value 4000000 passed from command line
2978
+ [2023-07-04 15:41:58,433][18333] Experiment dir /content/train_dir/default_experiment already exists!
2979
+ [2023-07-04 15:41:58,435][18333] Resuming existing experiment from /content/train_dir/default_experiment...
2980
+ [2023-07-04 15:41:58,437][18333] Weights and Biases integration disabled
2981
+ [2023-07-04 15:41:58,443][18333] Environment var CUDA_VISIBLE_DEVICES is 0
2982
+
2983
+ [2023-07-04 15:41:59,883][18333] Starting experiment with the following configuration:
2984
+ help=False
2985
+ algo=APPO
2986
+ env=doom_health_gathering_supreme
2987
+ experiment=default_experiment
2988
+ train_dir=/content/train_dir
2989
+ restart_behavior=resume
2990
+ device=gpu
2991
+ seed=None
2992
+ num_policies=1
2993
+ async_rl=True
2994
+ serial_mode=False
2995
+ batched_sampling=False
2996
+ num_batches_to_accumulate=2
2997
+ worker_num_splits=2
2998
+ policy_workers_per_policy=1
2999
+ max_policy_lag=1000
3000
+ num_workers=8
3001
+ num_envs_per_worker=4
3002
+ batch_size=1024
3003
+ num_batches_per_epoch=1
3004
+ num_epochs=1
3005
+ rollout=32
3006
+ recurrence=32
3007
+ shuffle_minibatches=False
3008
+ gamma=0.99
3009
+ reward_scale=1.0
3010
+ reward_clip=1000.0
3011
+ value_bootstrap=False
3012
+ normalize_returns=True
3013
+ exploration_loss_coeff=0.001
3014
+ value_loss_coeff=0.5
3015
+ kl_loss_coeff=0.0
3016
+ exploration_loss=symmetric_kl
3017
+ gae_lambda=0.95
3018
+ ppo_clip_ratio=0.1
3019
+ ppo_clip_value=0.2
3020
+ with_vtrace=False
3021
+ vtrace_rho=1.0
3022
+ vtrace_c=1.0
3023
+ optimizer=adam
3024
+ adam_eps=1e-06
3025
+ adam_beta1=0.9
3026
+ adam_beta2=0.999
3027
+ max_grad_norm=4.0
3028
+ learning_rate=0.0001
3029
+ lr_schedule=constant
3030
+ lr_schedule_kl_threshold=0.008
3031
+ lr_adaptive_min=1e-06
3032
+ lr_adaptive_max=0.01
3033
+ obs_subtract_mean=0.0
3034
+ obs_scale=255.0
3035
+ normalize_input=True
3036
+ normalize_input_keys=None
3037
+ decorrelate_experience_max_seconds=0
3038
+ decorrelate_envs_on_one_worker=True
3039
+ actor_worker_gpus=[]
3040
+ set_workers_cpu_affinity=True
3041
+ force_envs_single_thread=False
3042
+ default_niceness=0
3043
+ log_to_file=True
3044
+ experiment_summaries_interval=10
3045
+ flush_summaries_interval=30
3046
+ stats_avg=100
3047
+ summaries_use_frameskip=True
3048
+ heartbeat_interval=20
3049
+ heartbeat_reporting_interval=600
3050
+ train_for_env_steps=4000000
3051
+ train_for_seconds=10000000000
3052
+ save_every_sec=120
3053
+ keep_checkpoints=2
3054
+ load_checkpoint_kind=latest
3055
+ save_milestones_sec=-1
3056
+ save_best_every_sec=5
3057
+ save_best_metric=reward
3058
+ save_best_after=100000
3059
+ benchmark=False
3060
+ encoder_mlp_layers=[512, 512]
3061
+ encoder_conv_architecture=convnet_simple
3062
+ encoder_conv_mlp_layers=[512]
3063
+ use_rnn=True
3064
+ rnn_size=512
3065
+ rnn_type=gru
3066
+ rnn_num_layers=1
3067
+ decoder_mlp_layers=[]
3068
+ nonlinearity=elu
3069
+ policy_initialization=orthogonal
3070
+ policy_init_gain=1.0
3071
+ actor_critic_share_weights=True
3072
+ adaptive_stddev=True
3073
+ continuous_tanh_scale=0.0
3074
+ initial_stddev=1.0
3075
+ use_env_info_cache=False
3076
+ env_gpu_actions=False
3077
+ env_gpu_observations=True
3078
+ env_frameskip=4
3079
+ env_framestack=1
3080
+ pixel_format=CHW
3081
+ use_record_episode_statistics=False
3082
+ with_wandb=False
3083
+ wandb_user=None
3084
+ wandb_project=sample_factory
3085
+ wandb_group=None
3086
+ wandb_job_type=SF
3087
+ wandb_tags=[]
3088
+ with_pbt=False
3089
+ pbt_mix_policies_in_one_env=True
3090
+ pbt_period_env_steps=5000000
3091
+ pbt_start_mutation=20000000
3092
+ pbt_replace_fraction=0.3
3093
+ pbt_mutation_rate=0.15
3094
+ pbt_replace_reward_gap=0.1
3095
+ pbt_replace_reward_gap_absolute=1e-06
3096
+ pbt_optimize_gamma=False
3097
+ pbt_target_objective=true_objective
3098
+ pbt_perturb_min=1.1
3099
+ pbt_perturb_max=1.5
3100
+ num_agents=-1
3101
+ num_humans=0
3102
+ num_bots=-1
3103
+ start_bot_difficulty=None
3104
+ timelimit=None
3105
+ res_w=128
3106
+ res_h=72
3107
+ wide_aspect_ratio=False
3108
+ eval_env_frameskip=1
3109
+ fps=35
3110
+ command_line=--env=doom_health_gathering_supreme --num_workers=8 --num_envs_per_worker=4 --train_for_env_steps=4000000
3111
+ cli_args={'env': 'doom_health_gathering_supreme', 'num_workers': 8, 'num_envs_per_worker': 4, 'train_for_env_steps': 4000000}
3112
+ git_hash=unknown
3113
+ git_repo_name=not a git repository
3114
+ [2023-07-04 15:41:59,887][18333] Saving configuration to /content/train_dir/default_experiment/config.json...
3115
+ [2023-07-04 15:41:59,893][18333] Rollout worker 0 uses device cpu
3116
+ [2023-07-04 15:41:59,896][18333] Rollout worker 1 uses device cpu
3117
+ [2023-07-04 15:41:59,897][18333] Rollout worker 2 uses device cpu
3118
+ [2023-07-04 15:41:59,898][18333] Rollout worker 3 uses device cpu
3119
+ [2023-07-04 15:41:59,899][18333] Rollout worker 4 uses device cpu
3120
+ [2023-07-04 15:41:59,900][18333] Rollout worker 5 uses device cpu
3121
+ [2023-07-04 15:41:59,901][18333] Rollout worker 6 uses device cpu
3122
+ [2023-07-04 15:41:59,903][18333] Rollout worker 7 uses device cpu
3123
+ [2023-07-04 15:42:00,023][18333] Using GPUs [0] for process 0 (actually maps to GPUs [0])
3124
+ [2023-07-04 15:42:00,029][18333] InferenceWorker_p0-w0: min num requests: 2
3125
+ [2023-07-04 15:42:00,068][18333] Starting all processes...
3126
+ [2023-07-04 15:42:00,073][18333] Starting process learner_proc0
3127
+ [2023-07-04 15:42:00,141][18333] Starting all processes...
3128
+ [2023-07-04 15:42:00,150][18333] Starting process inference_proc0-0
3129
+ [2023-07-04 15:42:00,150][18333] Starting process rollout_proc0
3130
+ [2023-07-04 15:42:00,151][18333] Starting process rollout_proc1
3131
+ [2023-07-04 15:42:00,151][18333] Starting process rollout_proc2
3132
+ [2023-07-04 15:42:00,151][18333] Starting process rollout_proc3
3133
+ [2023-07-04 15:42:00,151][18333] Starting process rollout_proc4
3134
+ [2023-07-04 15:42:00,151][18333] Starting process rollout_proc5
3135
+ [2023-07-04 15:42:00,151][18333] Starting process rollout_proc6
3136
+ [2023-07-04 15:42:00,151][18333] Starting process rollout_proc7
3137
+ [2023-07-04 15:42:12,217][22133] Worker 1 uses CPU cores [1]
3138
+ [2023-07-04 15:42:12,582][22113] Using GPUs [0] for process 0 (actually maps to GPUs [0])
3139
+ [2023-07-04 15:42:12,585][22113] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for learning process 0
3140
+ [2023-07-04 15:42:12,593][22135] Worker 4 uses CPU cores [0]
3141
+ [2023-07-04 15:42:12,595][22126] Using GPUs [0] for process 0 (actually maps to GPUs [0])
3142
+ [2023-07-04 15:42:12,597][22126] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for inference process 0
3143
+ [2023-07-04 15:42:12,630][22113] Num visible devices: 1
3144
+ [2023-07-04 15:42:12,657][22126] Num visible devices: 1
3145
+ [2023-07-04 15:42:12,668][22113] Starting seed is not provided
3146
+ [2023-07-04 15:42:12,668][22113] Using GPUs [0] for process 0 (actually maps to GPUs [0])
3147
+ [2023-07-04 15:42:12,669][22113] Initializing actor-critic model on device cuda:0
3148
+ [2023-07-04 15:42:12,670][22113] RunningMeanStd input shape: (3, 72, 128)
3149
+ [2023-07-04 15:42:12,671][22113] RunningMeanStd input shape: (1,)
3150
+ [2023-07-04 15:42:12,685][22138] Worker 7 uses CPU cores [1]
3151
+ [2023-07-04 15:42:12,686][22132] Worker 3 uses CPU cores [1]
3152
+ [2023-07-04 15:42:12,691][22137] Worker 6 uses CPU cores [0]
3153
+ [2023-07-04 15:42:12,703][22113] ConvEncoder: input_channels=3
3154
+ [2023-07-04 15:42:12,717][22130] Worker 0 uses CPU cores [0]
3155
+ [2023-07-04 15:42:12,739][22136] Worker 5 uses CPU cores [1]
3156
+ [2023-07-04 15:42:12,742][22134] Worker 2 uses CPU cores [0]
3157
+ [2023-07-04 15:42:12,832][22113] Conv encoder output size: 512
3158
+ [2023-07-04 15:42:12,833][22113] Policy head output size: 512
3159
+ [2023-07-04 15:42:12,848][22113] Created Actor Critic model with architecture:
3160
+ [2023-07-04 15:42:12,848][22113] ActorCriticSharedWeights(
3161
+ (obs_normalizer): ObservationNormalizer(
3162
+ (running_mean_std): RunningMeanStdDictInPlace(
3163
+ (running_mean_std): ModuleDict(
3164
+ (obs): RunningMeanStdInPlace()
3165
+ )
3166
+ )
3167
+ )
3168
+ (returns_normalizer): RecursiveScriptModule(original_name=RunningMeanStdInPlace)
3169
+ (encoder): VizdoomEncoder(
3170
+ (basic_encoder): ConvEncoder(
3171
+ (enc): RecursiveScriptModule(
3172
+ original_name=ConvEncoderImpl
3173
+ (conv_head): RecursiveScriptModule(
3174
+ original_name=Sequential
3175
+ (0): RecursiveScriptModule(original_name=Conv2d)
3176
+ (1): RecursiveScriptModule(original_name=ELU)
3177
+ (2): RecursiveScriptModule(original_name=Conv2d)
3178
+ (3): RecursiveScriptModule(original_name=ELU)
3179
+ (4): RecursiveScriptModule(original_name=Conv2d)
3180
+ (5): RecursiveScriptModule(original_name=ELU)
3181
+ )
3182
+ (mlp_layers): RecursiveScriptModule(
3183
+ original_name=Sequential
3184
+ (0): RecursiveScriptModule(original_name=Linear)
3185
+ (1): RecursiveScriptModule(original_name=ELU)
3186
+ )
3187
+ )
3188
+ )
3189
+ )
3190
+ (core): ModelCoreRNN(
3191
+ (core): GRU(512, 512)
3192
+ )
3193
+ (decoder): MlpDecoder(
3194
+ (mlp): Identity()
3195
+ )
3196
+ (critic_linear): Linear(in_features=512, out_features=1, bias=True)
3197
+ (action_parameterization): ActionParameterizationDefault(
3198
+ (distribution_linear): Linear(in_features=512, out_features=5, bias=True)
3199
+ )
3200
+ )
3201
+ [2023-07-04 15:42:14,186][22113] Using optimizer <class 'torch.optim.adam.Adam'>
3202
+ [2023-07-04 15:42:14,187][22113] Loading state from checkpoint /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000490_2007040.pth...
3203
+ [2023-07-04 15:42:14,218][22113] Loading model from checkpoint
3204
+ [2023-07-04 15:42:14,222][22113] Loaded experiment state at self.train_step=490, self.env_steps=2007040
3205
+ [2023-07-04 15:42:14,222][22113] Initialized policy 0 weights for model version 490
3206
+ [2023-07-04 15:42:14,225][22113] Using GPUs [0] for process 0 (actually maps to GPUs [0])
3207
+ [2023-07-04 15:42:14,238][22113] LearnerWorker_p0 finished initialization!
3208
+ [2023-07-04 15:42:14,414][22126] RunningMeanStd input shape: (3, 72, 128)
3209
+ [2023-07-04 15:42:14,415][22126] RunningMeanStd input shape: (1,)
3210
+ [2023-07-04 15:42:14,427][22126] ConvEncoder: input_channels=3
3211
+ [2023-07-04 15:42:14,530][22126] Conv encoder output size: 512
3212
+ [2023-07-04 15:42:14,530][22126] Policy head output size: 512
3213
+ [2023-07-04 15:42:15,731][18333] Inference worker 0-0 is ready!
3214
+ [2023-07-04 15:42:15,733][18333] All inference workers are ready! Signal rollout workers to start!
3215
+ [2023-07-04 15:42:15,833][22136] Doom resolution: 160x120, resize resolution: (128, 72)
3216
+ [2023-07-04 15:42:15,834][22138] Doom resolution: 160x120, resize resolution: (128, 72)
3217
+ [2023-07-04 15:42:15,836][22133] Doom resolution: 160x120, resize resolution: (128, 72)
3218
+ [2023-07-04 15:42:15,837][22132] Doom resolution: 160x120, resize resolution: (128, 72)
3219
+ [2023-07-04 15:42:15,829][22134] Doom resolution: 160x120, resize resolution: (128, 72)
3220
+ [2023-07-04 15:42:15,840][22135] Doom resolution: 160x120, resize resolution: (128, 72)
3221
+ [2023-07-04 15:42:15,837][22137] Doom resolution: 160x120, resize resolution: (128, 72)
3222
+ [2023-07-04 15:42:15,838][22130] Doom resolution: 160x120, resize resolution: (128, 72)
3223
+ [2023-07-04 15:42:16,364][22134] Decorrelating experience for 0 frames...
3224
+ [2023-07-04 15:42:16,789][22135] Decorrelating experience for 0 frames...
3225
+ [2023-07-04 15:42:17,197][22132] Decorrelating experience for 0 frames...
3226
+ [2023-07-04 15:42:17,199][22133] Decorrelating experience for 0 frames...
3227
+ [2023-07-04 15:42:17,201][22136] Decorrelating experience for 0 frames...
3228
+ [2023-07-04 15:42:17,205][22138] Decorrelating experience for 0 frames...
3229
+ [2023-07-04 15:42:18,447][18333] Fps is (10 sec: nan, 60 sec: nan, 300 sec: nan). Total num frames: 2007040. Throughput: 0: nan. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
3230
+ [2023-07-04 15:42:18,787][22130] Decorrelating experience for 0 frames...
3231
+ [2023-07-04 15:42:18,793][22136] Decorrelating experience for 32 frames...
3232
+ [2023-07-04 15:42:18,799][22133] Decorrelating experience for 32 frames...
3233
+ [2023-07-04 15:42:18,804][22138] Decorrelating experience for 32 frames...
3234
+ [2023-07-04 15:42:18,819][22134] Decorrelating experience for 32 frames...
3235
+ [2023-07-04 15:42:18,872][22135] Decorrelating experience for 32 frames...
3236
+ [2023-07-04 15:42:20,014][18333] Heartbeat connected on Batcher_0
3237
+ [2023-07-04 15:42:20,019][18333] Heartbeat connected on LearnerWorker_p0
3238
+ [2023-07-04 15:42:20,073][18333] Heartbeat connected on InferenceWorker_p0-w0
3239
+ [2023-07-04 15:42:20,499][22137] Decorrelating experience for 0 frames...
3240
+ [2023-07-04 15:42:20,531][22130] Decorrelating experience for 32 frames...
3241
+ [2023-07-04 15:42:20,759][22135] Decorrelating experience for 64 frames...
3242
+ [2023-07-04 15:42:21,358][22132] Decorrelating experience for 32 frames...
3243
+ [2023-07-04 15:42:21,673][22136] Decorrelating experience for 64 frames...
3244
+ [2023-07-04 15:42:21,685][22133] Decorrelating experience for 64 frames...
3245
+ [2023-07-04 15:42:22,606][22138] Decorrelating experience for 64 frames...
3246
+ [2023-07-04 15:42:22,860][22130] Decorrelating experience for 64 frames...
3247
+ [2023-07-04 15:42:22,874][22137] Decorrelating experience for 32 frames...
3248
+ [2023-07-04 15:42:23,443][18333] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 2007040. Throughput: 0: 0.0. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
3249
+ [2023-07-04 15:42:23,493][22136] Decorrelating experience for 96 frames...
3250
+ [2023-07-04 15:42:23,661][22134] Decorrelating experience for 64 frames...
3251
+ [2023-07-04 15:42:23,829][18333] Heartbeat connected on RolloutWorker_w5
3252
+ [2023-07-04 15:42:24,876][22132] Decorrelating experience for 64 frames...
3253
+ [2023-07-04 15:42:25,138][22138] Decorrelating experience for 96 frames...
3254
+ [2023-07-04 15:42:25,516][22137] Decorrelating experience for 64 frames...
3255
+ [2023-07-04 15:42:25,520][18333] Heartbeat connected on RolloutWorker_w7
3256
+ [2023-07-04 15:42:26,625][22130] Decorrelating experience for 96 frames...
3257
+ [2023-07-04 15:42:27,023][22135] Decorrelating experience for 96 frames...
3258
+ [2023-07-04 15:42:27,323][18333] Heartbeat connected on RolloutWorker_w0
3259
+ [2023-07-04 15:42:27,403][22134] Decorrelating experience for 96 frames...
3260
+ [2023-07-04 15:42:27,426][22133] Decorrelating experience for 96 frames...
3261
+ [2023-07-04 15:42:27,727][18333] Heartbeat connected on RolloutWorker_w4
3262
+ [2023-07-04 15:42:27,884][18333] Heartbeat connected on RolloutWorker_w2
3263
+ [2023-07-04 15:42:28,014][18333] Heartbeat connected on RolloutWorker_w1
3264
+ [2023-07-04 15:42:28,444][18333] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 2007040. Throughput: 0: 104.4. Samples: 1044. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
3265
+ [2023-07-04 15:42:28,450][18333] Avg episode reward: [(0, '5.920')]
3266
+ [2023-07-04 15:42:30,105][22137] Decorrelating experience for 96 frames...
3267
+ [2023-07-04 15:42:30,522][22113] Signal inference workers to stop experience collection...
3268
+ [2023-07-04 15:42:30,544][22126] InferenceWorker_p0-w0: stopping experience collection
3269
+ [2023-07-04 15:42:30,576][18333] Heartbeat connected on RolloutWorker_w6
3270
+ [2023-07-04 15:42:30,706][22132] Decorrelating experience for 96 frames...
3271
+ [2023-07-04 15:42:30,763][18333] Heartbeat connected on RolloutWorker_w3
3272
+ [2023-07-04 15:42:31,213][22113] Signal inference workers to resume experience collection...
3273
+ [2023-07-04 15:42:31,213][22126] InferenceWorker_p0-w0: resuming experience collection
3274
+ [2023-07-04 15:42:33,444][18333] Fps is (10 sec: 1228.8, 60 sec: 819.4, 300 sec: 819.4). Total num frames: 2019328. Throughput: 0: 161.6. Samples: 2424. Policy #0 lag: (min: 0.0, avg: 0.0, max: 0.0)
3275
+ [2023-07-04 15:42:33,448][18333] Avg episode reward: [(0, '6.131')]
3276
+ [2023-07-04 15:42:38,444][18333] Fps is (10 sec: 3277.0, 60 sec: 1638.7, 300 sec: 1638.7). Total num frames: 2039808. Throughput: 0: 379.1. Samples: 7580. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
3277
+ [2023-07-04 15:42:38,446][18333] Avg episode reward: [(0, '10.472')]
3278
+ [2023-07-04 15:42:39,885][22126] Updated weights for policy 0, policy_version 500 (0.0364)
3279
+ [2023-07-04 15:42:43,444][18333] Fps is (10 sec: 3686.4, 60 sec: 1966.4, 300 sec: 1966.4). Total num frames: 2056192. Throughput: 0: 513.3. Samples: 12830. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
3280
+ [2023-07-04 15:42:43,448][18333] Avg episode reward: [(0, '12.881')]
3281
+ [2023-07-04 15:42:48,444][18333] Fps is (10 sec: 2867.2, 60 sec: 2048.3, 300 sec: 2048.3). Total num frames: 2068480. Throughput: 0: 491.9. Samples: 14756. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
3282
+ [2023-07-04 15:42:48,454][18333] Avg episode reward: [(0, '15.054')]
3283
+ [2023-07-04 15:42:53,443][18333] Fps is (10 sec: 2867.2, 60 sec: 2223.8, 300 sec: 2223.8). Total num frames: 2084864. Throughput: 0: 537.4. Samples: 18808. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
3284
+ [2023-07-04 15:42:53,446][18333] Avg episode reward: [(0, '15.502')]
3285
+ [2023-07-04 15:42:54,028][22126] Updated weights for policy 0, policy_version 510 (0.0012)
3286
+ [2023-07-04 15:42:58,444][18333] Fps is (10 sec: 3686.4, 60 sec: 2457.8, 300 sec: 2457.8). Total num frames: 2105344. Throughput: 0: 631.0. Samples: 25236. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
3287
+ [2023-07-04 15:42:58,450][18333] Avg episode reward: [(0, '16.713')]
3288
+ [2023-07-04 15:43:03,444][18333] Fps is (10 sec: 4095.9, 60 sec: 2639.9, 300 sec: 2639.9). Total num frames: 2125824. Throughput: 0: 636.5. Samples: 28642. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
3289
+ [2023-07-04 15:43:03,447][18333] Avg episode reward: [(0, '20.677')]
3290
+ [2023-07-04 15:43:03,667][22126] Updated weights for policy 0, policy_version 520 (0.0018)
3291
+ [2023-07-04 15:43:08,444][18333] Fps is (10 sec: 3686.4, 60 sec: 2703.6, 300 sec: 2703.6). Total num frames: 2142208. Throughput: 0: 738.4. Samples: 33228. Policy #0 lag: (min: 0.0, avg: 0.3, max: 1.0)
3292
+ [2023-07-04 15:43:08,455][18333] Avg episode reward: [(0, '20.643')]
3293
+ [2023-07-04 15:43:13,444][18333] Fps is (10 sec: 2867.2, 60 sec: 2681.2, 300 sec: 2681.2). Total num frames: 2154496. Throughput: 0: 811.4. Samples: 37556. Policy #0 lag: (min: 0.0, avg: 0.3, max: 1.0)
3294
+ [2023-07-04 15:43:13,449][18333] Avg episode reward: [(0, '20.266')]
3295
+ [2023-07-04 15:43:16,601][22126] Updated weights for policy 0, policy_version 530 (0.0027)
3296
+ [2023-07-04 15:43:18,444][18333] Fps is (10 sec: 3276.8, 60 sec: 2799.1, 300 sec: 2799.1). Total num frames: 2174976. Throughput: 0: 844.5. Samples: 40426. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
3297
+ [2023-07-04 15:43:18,446][18333] Avg episode reward: [(0, '19.739')]
3298
+ [2023-07-04 15:43:23,449][18333] Fps is (10 sec: 4503.0, 60 sec: 3208.2, 300 sec: 2961.6). Total num frames: 2199552. Throughput: 0: 876.5. Samples: 47026. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
3299
+ [2023-07-04 15:43:23,456][18333] Avg episode reward: [(0, '19.858')]
3300
+ [2023-07-04 15:43:26,881][22126] Updated weights for policy 0, policy_version 540 (0.0017)
3301
+ [2023-07-04 15:43:28,444][18333] Fps is (10 sec: 4096.0, 60 sec: 3481.6, 300 sec: 2984.4). Total num frames: 2215936. Throughput: 0: 874.7. Samples: 52192. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
3302
+ [2023-07-04 15:43:28,447][18333] Avg episode reward: [(0, '18.952')]
3303
+ [2023-07-04 15:43:33,444][18333] Fps is (10 sec: 2868.7, 60 sec: 3481.6, 300 sec: 2949.2). Total num frames: 2228224. Throughput: 0: 878.7. Samples: 54300. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
3304
+ [2023-07-04 15:43:33,449][18333] Avg episode reward: [(0, '18.617')]
3305
+ [2023-07-04 15:43:38,444][18333] Fps is (10 sec: 2867.1, 60 sec: 3413.3, 300 sec: 2969.7). Total num frames: 2244608. Throughput: 0: 883.5. Samples: 58564. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
3306
+ [2023-07-04 15:43:38,446][18333] Avg episode reward: [(0, '19.696')]
3307
+ [2023-07-04 15:43:39,910][22126] Updated weights for policy 0, policy_version 550 (0.0015)
3308
+ [2023-07-04 15:43:43,445][18333] Fps is (10 sec: 3686.3, 60 sec: 3481.5, 300 sec: 3036.0). Total num frames: 2265088. Throughput: 0: 888.3. Samples: 65212. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
3309
+ [2023-07-04 15:43:43,450][18333] Avg episode reward: [(0, '20.749')]
3310
+ [2023-07-04 15:43:48,448][18333] Fps is (10 sec: 4094.1, 60 sec: 3617.9, 300 sec: 3094.7). Total num frames: 2285568. Throughput: 0: 886.9. Samples: 68558. Policy #0 lag: (min: 0.0, avg: 0.3, max: 1.0)
3311
+ [2023-07-04 15:43:48,451][18333] Avg episode reward: [(0, '20.008')]
3312
+ [2023-07-04 15:43:50,566][22126] Updated weights for policy 0, policy_version 560 (0.0015)
3313
+ [2023-07-04 15:43:53,444][18333] Fps is (10 sec: 3277.2, 60 sec: 3549.9, 300 sec: 3061.3). Total num frames: 2297856. Throughput: 0: 883.6. Samples: 72990. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
3314
+ [2023-07-04 15:43:53,450][18333] Avg episode reward: [(0, '20.912')]
3315
+ [2023-07-04 15:43:58,444][18333] Fps is (10 sec: 2868.5, 60 sec: 3481.6, 300 sec: 3072.1). Total num frames: 2314240. Throughput: 0: 878.1. Samples: 77072. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
3316
+ [2023-07-04 15:43:58,453][18333] Avg episode reward: [(0, '21.782')]
3317
+ [2023-07-04 15:43:58,465][22113] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000565_2314240.pth...
3318
+ [2023-07-04 15:43:58,661][22113] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000448_1835008.pth
3319
+ [2023-07-04 15:43:58,681][22113] Saving new best policy, reward=21.782!
3320
+ [2023-07-04 15:44:03,276][22126] Updated weights for policy 0, policy_version 570 (0.0027)
3321
+ [2023-07-04 15:44:03,443][18333] Fps is (10 sec: 3686.4, 60 sec: 3481.6, 300 sec: 3120.9). Total num frames: 2334720. Throughput: 0: 873.0. Samples: 79712. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
3322
+ [2023-07-04 15:44:03,450][18333] Avg episode reward: [(0, '21.747')]
3323
+ [2023-07-04 15:44:08,444][18333] Fps is (10 sec: 4096.1, 60 sec: 3549.9, 300 sec: 3165.2). Total num frames: 2355200. Throughput: 0: 876.9. Samples: 86482. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
3324
+ [2023-07-04 15:44:08,446][18333] Avg episode reward: [(0, '22.334')]
3325
+ [2023-07-04 15:44:08,461][22113] Saving new best policy, reward=22.334!
3326
+ [2023-07-04 15:44:13,444][18333] Fps is (10 sec: 3686.4, 60 sec: 3618.1, 300 sec: 3170.1). Total num frames: 2371584. Throughput: 0: 877.7. Samples: 91688. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
3327
+ [2023-07-04 15:44:13,447][18333] Avg episode reward: [(0, '22.763')]
3328
+ [2023-07-04 15:44:13,454][22113] Saving new best policy, reward=22.763!
3329
+ [2023-07-04 15:44:14,147][22126] Updated weights for policy 0, policy_version 580 (0.0021)
3330
+ [2023-07-04 15:44:18,444][18333] Fps is (10 sec: 2867.0, 60 sec: 3481.6, 300 sec: 3140.3). Total num frames: 2383872. Throughput: 0: 873.9. Samples: 93626. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
3331
+ [2023-07-04 15:44:18,448][18333] Avg episode reward: [(0, '23.183')]
3332
+ [2023-07-04 15:44:18,460][22113] Saving new best policy, reward=23.183!
3333
+ [2023-07-04 15:44:23,444][18333] Fps is (10 sec: 2867.2, 60 sec: 3345.4, 300 sec: 3145.8). Total num frames: 2400256. Throughput: 0: 870.7. Samples: 97744. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
3334
+ [2023-07-04 15:44:23,446][18333] Avg episode reward: [(0, '21.347')]
3335
+ [2023-07-04 15:44:26,586][22126] Updated weights for policy 0, policy_version 590 (0.0015)
3336
+ [2023-07-04 15:44:28,444][18333] Fps is (10 sec: 3686.6, 60 sec: 3413.3, 300 sec: 3182.4). Total num frames: 2420736. Throughput: 0: 869.7. Samples: 104346. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
3337
+ [2023-07-04 15:44:28,445][18333] Avg episode reward: [(0, '21.713')]
3338
+ [2023-07-04 15:44:33,444][18333] Fps is (10 sec: 4096.0, 60 sec: 3549.9, 300 sec: 3216.2). Total num frames: 2441216. Throughput: 0: 868.1. Samples: 107620. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
3339
+ [2023-07-04 15:44:33,446][18333] Avg episode reward: [(0, '20.100')]
3340
+ [2023-07-04 15:44:38,163][22126] Updated weights for policy 0, policy_version 600 (0.0012)
3341
+ [2023-07-04 15:44:38,445][18333] Fps is (10 sec: 3686.0, 60 sec: 3549.8, 300 sec: 3218.3). Total num frames: 2457600. Throughput: 0: 866.4. Samples: 111978. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
3342
+ [2023-07-04 15:44:38,454][18333] Avg episode reward: [(0, '20.039')]
3343
+ [2023-07-04 15:44:43,444][18333] Fps is (10 sec: 2867.0, 60 sec: 3413.4, 300 sec: 3192.1). Total num frames: 2469888. Throughput: 0: 870.0. Samples: 116222. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
3344
+ [2023-07-04 15:44:43,449][18333] Avg episode reward: [(0, '19.196')]
3345
+ [2023-07-04 15:44:48,443][18333] Fps is (10 sec: 3686.8, 60 sec: 3481.9, 300 sec: 3249.6). Total num frames: 2494464. Throughput: 0: 875.0. Samples: 119086. Policy #0 lag: (min: 0.0, avg: 0.2, max: 1.0)
3346
+ [2023-07-04 15:44:48,446][18333] Avg episode reward: [(0, '19.491')]
3347
+ [2023-07-04 15:44:49,316][22126] Updated weights for policy 0, policy_version 610 (0.0022)
3348
+ [2023-07-04 15:44:53,444][18333] Fps is (10 sec: 4505.8, 60 sec: 3618.1, 300 sec: 3276.9). Total num frames: 2514944. Throughput: 0: 873.4. Samples: 125786. Policy #0 lag: (min: 0.0, avg: 0.3, max: 1.0)
3349
+ [2023-07-04 15:44:53,446][18333] Avg episode reward: [(0, '19.441')]
3350
+ [2023-07-04 15:44:58,444][18333] Fps is (10 sec: 3276.8, 60 sec: 3549.9, 300 sec: 3251.3). Total num frames: 2527232. Throughput: 0: 868.0. Samples: 130746. Policy #0 lag: (min: 0.0, avg: 0.2, max: 1.0)
3351
+ [2023-07-04 15:44:58,446][18333] Avg episode reward: [(0, '20.312')]
3352
+ [2023-07-04 15:45:01,652][22126] Updated weights for policy 0, policy_version 620 (0.0012)
3353
+ [2023-07-04 15:45:03,444][18333] Fps is (10 sec: 2867.2, 60 sec: 3481.6, 300 sec: 3252.1). Total num frames: 2543616. Throughput: 0: 870.8. Samples: 132812. Policy #0 lag: (min: 0.0, avg: 0.3, max: 1.0)
3354
+ [2023-07-04 15:45:03,446][18333] Avg episode reward: [(0, '20.249')]
3355
+ [2023-07-04 15:45:08,444][18333] Fps is (10 sec: 3276.8, 60 sec: 3413.3, 300 sec: 3252.8). Total num frames: 2560000. Throughput: 0: 875.5. Samples: 137142. Policy #0 lag: (min: 0.0, avg: 0.3, max: 1.0)
3356
+ [2023-07-04 15:45:08,446][18333] Avg episode reward: [(0, '19.822')]
3357
+ [2023-07-04 15:45:12,866][22126] Updated weights for policy 0, policy_version 630 (0.0017)
3358
+ [2023-07-04 15:45:13,444][18333] Fps is (10 sec: 3686.4, 60 sec: 3481.6, 300 sec: 3276.9). Total num frames: 2580480. Throughput: 0: 875.6. Samples: 143748. Policy #0 lag: (min: 0.0, avg: 0.3, max: 1.0)
3359
+ [2023-07-04 15:45:13,446][18333] Avg episode reward: [(0, '20.569')]
3360
+ [2023-07-04 15:45:18,444][18333] Fps is (10 sec: 4096.0, 60 sec: 3618.2, 300 sec: 3299.6). Total num frames: 2600960. Throughput: 0: 875.8. Samples: 147032. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
3361
+ [2023-07-04 15:45:18,446][18333] Avg episode reward: [(0, '21.334')]
3362
+ [2023-07-04 15:45:23,445][18333] Fps is (10 sec: 3276.2, 60 sec: 3549.8, 300 sec: 3276.8). Total num frames: 2613248. Throughput: 0: 881.4. Samples: 151640. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
3363
+ [2023-07-04 15:45:23,447][18333] Avg episode reward: [(0, '21.972')]
3364
+ [2023-07-04 15:45:25,316][22126] Updated weights for policy 0, policy_version 640 (0.0026)
3365
+ [2023-07-04 15:45:28,444][18333] Fps is (10 sec: 2867.2, 60 sec: 3481.6, 300 sec: 3276.9). Total num frames: 2629632. Throughput: 0: 877.9. Samples: 155728. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
3366
+ [2023-07-04 15:45:28,447][18333] Avg episode reward: [(0, '21.312')]
3367
+ [2023-07-04 15:45:33,444][18333] Fps is (10 sec: 3687.0, 60 sec: 3481.6, 300 sec: 3297.9). Total num frames: 2650112. Throughput: 0: 875.6. Samples: 158490. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
3368
+ [2023-07-04 15:45:33,446][18333] Avg episode reward: [(0, '21.985')]
3369
+ [2023-07-04 15:45:36,100][22126] Updated weights for policy 0, policy_version 650 (0.0019)
3370
+ [2023-07-04 15:45:38,444][18333] Fps is (10 sec: 4096.0, 60 sec: 3549.9, 300 sec: 3317.8). Total num frames: 2670592. Throughput: 0: 874.2. Samples: 165124. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
3371
+ [2023-07-04 15:45:38,446][18333] Avg episode reward: [(0, '21.232')]
3372
+ [2023-07-04 15:45:43,446][18333] Fps is (10 sec: 3685.4, 60 sec: 3618.0, 300 sec: 3316.8). Total num frames: 2686976. Throughput: 0: 876.4. Samples: 170188. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
3373
+ [2023-07-04 15:45:43,449][18333] Avg episode reward: [(0, '20.670')]
3374
+ [2023-07-04 15:45:48,444][18333] Fps is (10 sec: 2867.1, 60 sec: 3413.3, 300 sec: 3296.4). Total num frames: 2699264. Throughput: 0: 877.1. Samples: 172282. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
3375
+ [2023-07-04 15:45:48,449][18333] Avg episode reward: [(0, '19.693')]
3376
+ [2023-07-04 15:45:49,212][22126] Updated weights for policy 0, policy_version 660 (0.0027)
3377
+ [2023-07-04 15:45:53,444][18333] Fps is (10 sec: 2867.9, 60 sec: 3345.1, 300 sec: 3295.9). Total num frames: 2715648. Throughput: 0: 876.9. Samples: 176604. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
3378
+ [2023-07-04 15:45:53,446][18333] Avg episode reward: [(0, '18.681')]
3379
+ [2023-07-04 15:45:58,444][18333] Fps is (10 sec: 4096.1, 60 sec: 3549.9, 300 sec: 3332.7). Total num frames: 2740224. Throughput: 0: 877.8. Samples: 183250. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
3380
+ [2023-07-04 15:45:58,453][18333] Avg episode reward: [(0, '17.263')]
3381
+ [2023-07-04 15:45:58,465][22113] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000669_2740224.pth...
3382
+ [2023-07-04 15:45:58,593][22113] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000490_2007040.pth
3383
+ [2023-07-04 15:45:59,224][22126] Updated weights for policy 0, policy_version 670 (0.0013)
3384
+ [2023-07-04 15:46:03,446][18333] Fps is (10 sec: 4094.9, 60 sec: 3549.7, 300 sec: 3331.4). Total num frames: 2756608. Throughput: 0: 878.6. Samples: 186570. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
3385
+ [2023-07-04 15:46:03,451][18333] Avg episode reward: [(0, '17.009')]
3386
+ [2023-07-04 15:46:08,443][18333] Fps is (10 sec: 3276.8, 60 sec: 3549.9, 300 sec: 3330.3). Total num frames: 2772992. Throughput: 0: 872.7. Samples: 190908. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
3387
+ [2023-07-04 15:46:08,445][18333] Avg episode reward: [(0, '17.890')]
3388
+ [2023-07-04 15:46:12,802][22126] Updated weights for policy 0, policy_version 680 (0.0017)
3389
+ [2023-07-04 15:46:13,444][18333] Fps is (10 sec: 2868.0, 60 sec: 3413.3, 300 sec: 3311.7). Total num frames: 2785280. Throughput: 0: 874.4. Samples: 195076. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
3390
+ [2023-07-04 15:46:13,447][18333] Avg episode reward: [(0, '18.755')]
3391
+ [2023-07-04 15:46:18,444][18333] Fps is (10 sec: 3276.7, 60 sec: 3413.3, 300 sec: 3328.0). Total num frames: 2805760. Throughput: 0: 880.7. Samples: 198124. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
3392
+ [2023-07-04 15:46:18,451][18333] Avg episode reward: [(0, '19.946')]
3393
+ [2023-07-04 15:46:22,319][22126] Updated weights for policy 0, policy_version 690 (0.0015)
3394
+ [2023-07-04 15:46:23,444][18333] Fps is (10 sec: 4505.7, 60 sec: 3618.2, 300 sec: 3360.4). Total num frames: 2830336. Throughput: 0: 881.1. Samples: 204772. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
3395
+ [2023-07-04 15:46:23,446][18333] Avg episode reward: [(0, '21.407')]
3396
+ [2023-07-04 15:46:28,444][18333] Fps is (10 sec: 3686.5, 60 sec: 3549.9, 300 sec: 3342.4). Total num frames: 2842624. Throughput: 0: 875.4. Samples: 209578. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
3397
+ [2023-07-04 15:46:28,446][18333] Avg episode reward: [(0, '21.690')]
3398
+ [2023-07-04 15:46:33,444][18333] Fps is (10 sec: 2867.2, 60 sec: 3481.6, 300 sec: 3341.1). Total num frames: 2859008. Throughput: 0: 875.0. Samples: 211656. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
3399
+ [2023-07-04 15:46:33,446][18333] Avg episode reward: [(0, '23.014')]
3400
+ [2023-07-04 15:46:36,290][22126] Updated weights for policy 0, policy_version 700 (0.0014)
3401
+ [2023-07-04 15:46:38,444][18333] Fps is (10 sec: 3276.8, 60 sec: 3413.3, 300 sec: 3339.9). Total num frames: 2875392. Throughput: 0: 881.8. Samples: 216284. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
3402
+ [2023-07-04 15:46:38,449][18333] Avg episode reward: [(0, '22.682')]
3403
+ [2023-07-04 15:46:43,443][18333] Fps is (10 sec: 3686.4, 60 sec: 3481.8, 300 sec: 3354.1). Total num frames: 2895872. Throughput: 0: 880.4. Samples: 222870. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
3404
+ [2023-07-04 15:46:43,447][18333] Avg episode reward: [(0, '23.860')]
3405
+ [2023-07-04 15:46:43,454][22113] Saving new best policy, reward=23.860!
3406
+ [2023-07-04 15:46:45,418][22126] Updated weights for policy 0, policy_version 710 (0.0012)
3407
+ [2023-07-04 15:46:48,444][18333] Fps is (10 sec: 4096.0, 60 sec: 3618.2, 300 sec: 3367.9). Total num frames: 2916352. Throughput: 0: 876.8. Samples: 226024. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
3408
+ [2023-07-04 15:46:48,446][18333] Avg episode reward: [(0, '24.045')]
3409
+ [2023-07-04 15:46:48,452][22113] Saving new best policy, reward=24.045!
3410
+ [2023-07-04 15:46:53,444][18333] Fps is (10 sec: 3276.8, 60 sec: 3549.9, 300 sec: 3351.3). Total num frames: 2928640. Throughput: 0: 873.4. Samples: 230210. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
3411
+ [2023-07-04 15:46:53,446][18333] Avg episode reward: [(0, '23.673')]
3412
+ [2023-07-04 15:46:58,444][18333] Fps is (10 sec: 2867.1, 60 sec: 3413.3, 300 sec: 3350.0). Total num frames: 2945024. Throughput: 0: 874.7. Samples: 234436. Policy #0 lag: (min: 0.0, avg: 0.3, max: 1.0)
3413
+ [2023-07-04 15:46:58,449][18333] Avg episode reward: [(0, '23.703')]
3414
+ [2023-07-04 15:46:59,263][22126] Updated weights for policy 0, policy_version 720 (0.0019)
3415
+ [2023-07-04 15:47:03,444][18333] Fps is (10 sec: 3686.4, 60 sec: 3481.8, 300 sec: 3363.1). Total num frames: 2965504. Throughput: 0: 879.2. Samples: 237686. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
3416
+ [2023-07-04 15:47:03,449][18333] Avg episode reward: [(0, '24.067')]
3417
+ [2023-07-04 15:47:03,454][22113] Saving new best policy, reward=24.067!
3418
+ [2023-07-04 15:47:08,444][18333] Fps is (10 sec: 4096.1, 60 sec: 3549.9, 300 sec: 3375.7). Total num frames: 2985984. Throughput: 0: 878.6. Samples: 244308. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
3419
+ [2023-07-04 15:47:08,453][18333] Avg episode reward: [(0, '23.020')]
3420
+ [2023-07-04 15:47:08,772][22126] Updated weights for policy 0, policy_version 730 (0.0014)
3421
+ [2023-07-04 15:47:13,444][18333] Fps is (10 sec: 3686.4, 60 sec: 3618.1, 300 sec: 3374.0). Total num frames: 3002368. Throughput: 0: 878.3. Samples: 249102. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
3422
+ [2023-07-04 15:47:13,451][18333] Avg episode reward: [(0, '23.164')]
3423
+ [2023-07-04 15:47:18,444][18333] Fps is (10 sec: 2867.1, 60 sec: 3481.6, 300 sec: 3415.6). Total num frames: 3014656. Throughput: 0: 878.1. Samples: 251172. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
3424
+ [2023-07-04 15:47:18,447][18333] Avg episode reward: [(0, '23.238')]
3425
+ [2023-07-04 15:47:22,534][22126] Updated weights for policy 0, policy_version 740 (0.0022)
3426
+ [2023-07-04 15:47:23,443][18333] Fps is (10 sec: 3276.8, 60 sec: 3413.3, 300 sec: 3485.1). Total num frames: 3035136. Throughput: 0: 878.0. Samples: 255792. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
3427
+ [2023-07-04 15:47:23,449][18333] Avg episode reward: [(0, '22.522')]
3428
+ [2023-07-04 15:47:28,444][18333] Fps is (10 sec: 4096.2, 60 sec: 3549.9, 300 sec: 3512.8). Total num frames: 3055616. Throughput: 0: 880.2. Samples: 262480. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
3429
+ [2023-07-04 15:47:28,446][18333] Avg episode reward: [(0, '23.105')]
3430
+ [2023-07-04 15:47:32,139][22126] Updated weights for policy 0, policy_version 750 (0.0012)
3431
+ [2023-07-04 15:47:33,446][18333] Fps is (10 sec: 3685.6, 60 sec: 3549.7, 300 sec: 3498.9). Total num frames: 3072000. Throughput: 0: 881.4. Samples: 265690. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
3432
+ [2023-07-04 15:47:33,454][18333] Avg episode reward: [(0, '22.716')]
3433
+ [2023-07-04 15:47:38,444][18333] Fps is (10 sec: 3276.8, 60 sec: 3549.9, 300 sec: 3499.0). Total num frames: 3088384. Throughput: 0: 881.5. Samples: 269878. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
3434
+ [2023-07-04 15:47:38,450][18333] Avg episode reward: [(0, '23.030')]
3435
+ [2023-07-04 15:47:43,443][18333] Fps is (10 sec: 3277.5, 60 sec: 3481.6, 300 sec: 3512.8). Total num frames: 3104768. Throughput: 0: 884.0. Samples: 274216. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
3436
+ [2023-07-04 15:47:43,451][18333] Avg episode reward: [(0, '22.901')]
3437
+ [2023-07-04 15:47:45,377][22126] Updated weights for policy 0, policy_version 760 (0.0024)
3438
+ [2023-07-04 15:47:48,444][18333] Fps is (10 sec: 3686.4, 60 sec: 3481.6, 300 sec: 3526.7). Total num frames: 3125248. Throughput: 0: 885.2. Samples: 277518. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
3439
+ [2023-07-04 15:47:48,451][18333] Avg episode reward: [(0, '22.048')]
3440
+ [2023-07-04 15:47:53,444][18333] Fps is (10 sec: 4096.0, 60 sec: 3618.1, 300 sec: 3526.7). Total num frames: 3145728. Throughput: 0: 885.5. Samples: 284154. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
3441
+ [2023-07-04 15:47:53,449][18333] Avg episode reward: [(0, '22.074')]
3442
+ [2023-07-04 15:47:55,522][22126] Updated weights for policy 0, policy_version 770 (0.0012)
3443
+ [2023-07-04 15:47:58,444][18333] Fps is (10 sec: 3276.8, 60 sec: 3549.9, 300 sec: 3499.0). Total num frames: 3158016. Throughput: 0: 882.9. Samples: 288832. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
3444
+ [2023-07-04 15:47:58,448][18333] Avg episode reward: [(0, '22.513')]
3445
+ [2023-07-04 15:47:58,459][22113] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000771_3158016.pth...
3446
+ [2023-07-04 15:47:58,641][22113] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000565_2314240.pth
3447
+ [2023-07-04 15:48:03,444][18333] Fps is (10 sec: 2867.0, 60 sec: 3481.6, 300 sec: 3498.9). Total num frames: 3174400. Throughput: 0: 880.9. Samples: 290812. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
3448
+ [2023-07-04 15:48:03,454][18333] Avg episode reward: [(0, '22.144')]
3449
+ [2023-07-04 15:48:08,381][22126] Updated weights for policy 0, policy_version 780 (0.0017)
3450
+ [2023-07-04 15:48:08,443][18333] Fps is (10 sec: 3686.4, 60 sec: 3481.6, 300 sec: 3526.7). Total num frames: 3194880. Throughput: 0: 881.0. Samples: 295436. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
3451
+ [2023-07-04 15:48:08,448][18333] Avg episode reward: [(0, '21.483')]
3452
+ [2023-07-04 15:48:13,444][18333] Fps is (10 sec: 4096.3, 60 sec: 3549.9, 300 sec: 3526.7). Total num frames: 3215360. Throughput: 0: 884.0. Samples: 302262. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
3453
+ [2023-07-04 15:48:13,445][18333] Avg episode reward: [(0, '22.172')]
3454
+ [2023-07-04 15:48:18,444][18333] Fps is (10 sec: 3686.4, 60 sec: 3618.2, 300 sec: 3499.0). Total num frames: 3231744. Throughput: 0: 885.5. Samples: 305536. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
3455
+ [2023-07-04 15:48:18,446][18333] Avg episode reward: [(0, '23.374')]
3456
+ [2023-07-04 15:48:18,935][22126] Updated weights for policy 0, policy_version 790 (0.0021)
3457
+ [2023-07-04 15:48:23,443][18333] Fps is (10 sec: 3276.8, 60 sec: 3549.9, 300 sec: 3499.0). Total num frames: 3248128. Throughput: 0: 885.7. Samples: 309734. Policy #0 lag: (min: 0.0, avg: 0.3, max: 1.0)
3458
+ [2023-07-04 15:48:23,446][18333] Avg episode reward: [(0, '23.333')]
3459
+ [2023-07-04 15:48:28,444][18333] Fps is (10 sec: 2867.2, 60 sec: 3413.3, 300 sec: 3499.0). Total num frames: 3260416. Throughput: 0: 884.2. Samples: 314006. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
3460
+ [2023-07-04 15:48:28,447][18333] Avg episode reward: [(0, '23.753')]
3461
+ [2023-07-04 15:48:31,688][22126] Updated weights for policy 0, policy_version 800 (0.0014)
3462
+ [2023-07-04 15:48:33,444][18333] Fps is (10 sec: 3276.8, 60 sec: 3481.7, 300 sec: 3512.8). Total num frames: 3280896. Throughput: 0: 876.0. Samples: 316940. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
3463
+ [2023-07-04 15:48:33,446][18333] Avg episode reward: [(0, '23.964')]
3464
+ [2023-07-04 15:48:38,444][18333] Fps is (10 sec: 4505.6, 60 sec: 3618.1, 300 sec: 3526.7). Total num frames: 3305472. Throughput: 0: 873.5. Samples: 323462. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
3465
+ [2023-07-04 15:48:38,446][18333] Avg episode reward: [(0, '24.770')]
3466
+ [2023-07-04 15:48:38,458][22113] Saving new best policy, reward=24.770!
3467
+ [2023-07-04 15:48:42,139][22126] Updated weights for policy 0, policy_version 810 (0.0017)
3468
+ [2023-07-04 15:48:43,444][18333] Fps is (10 sec: 3686.4, 60 sec: 3549.9, 300 sec: 3499.0). Total num frames: 3317760. Throughput: 0: 879.9. Samples: 328428. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
3469
+ [2023-07-04 15:48:43,446][18333] Avg episode reward: [(0, '24.421')]
3470
+ [2023-07-04 15:48:48,444][18333] Fps is (10 sec: 2867.1, 60 sec: 3481.6, 300 sec: 3512.8). Total num frames: 3334144. Throughput: 0: 882.4. Samples: 330520. Policy #0 lag: (min: 0.0, avg: 0.3, max: 2.0)
3471
+ [2023-07-04 15:48:48,449][18333] Avg episode reward: [(0, '23.703')]
3472
+ [2023-07-04 15:48:53,444][18333] Fps is (10 sec: 3276.8, 60 sec: 3413.3, 300 sec: 3512.8). Total num frames: 3350528. Throughput: 0: 882.3. Samples: 335138. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
3473
+ [2023-07-04 15:48:53,448][18333] Avg episode reward: [(0, '23.282')]
3474
+ [2023-07-04 15:48:54,630][22126] Updated weights for policy 0, policy_version 820 (0.0031)
3475
+ [2023-07-04 15:48:58,444][18333] Fps is (10 sec: 3686.5, 60 sec: 3549.9, 300 sec: 3512.8). Total num frames: 3371008. Throughput: 0: 876.4. Samples: 341698. Policy #0 lag: (min: 0.0, avg: 0.3, max: 2.0)
3476
+ [2023-07-04 15:48:58,447][18333] Avg episode reward: [(0, '23.090')]
3477
+ [2023-07-04 15:49:03,444][18333] Fps is (10 sec: 4096.0, 60 sec: 3618.2, 300 sec: 3512.8). Total num frames: 3391488. Throughput: 0: 879.3. Samples: 345104. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
3478
+ [2023-07-04 15:49:03,448][18333] Avg episode reward: [(0, '22.572')]
3479
+ [2023-07-04 15:49:05,498][22126] Updated weights for policy 0, policy_version 830 (0.0012)
3480
+ [2023-07-04 15:49:08,448][18333] Fps is (10 sec: 3275.2, 60 sec: 3481.3, 300 sec: 3498.9). Total num frames: 3403776. Throughput: 0: 883.2. Samples: 349484. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
3481
+ [2023-07-04 15:49:08,451][18333] Avg episode reward: [(0, '23.881')]
3482
+ [2023-07-04 15:49:13,444][18333] Fps is (10 sec: 2867.1, 60 sec: 3413.3, 300 sec: 3512.8). Total num frames: 3420160. Throughput: 0: 883.4. Samples: 353758. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
3483
+ [2023-07-04 15:49:13,447][18333] Avg episode reward: [(0, '23.167')]
3484
+ [2023-07-04 15:49:17,533][22126] Updated weights for policy 0, policy_version 840 (0.0022)
3485
+ [2023-07-04 15:49:18,444][18333] Fps is (10 sec: 3688.1, 60 sec: 3481.6, 300 sec: 3526.7). Total num frames: 3440640. Throughput: 0: 883.9. Samples: 356714. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
3486
+ [2023-07-04 15:49:18,450][18333] Avg episode reward: [(0, '23.383')]
3487
+ [2023-07-04 15:49:23,444][18333] Fps is (10 sec: 4505.9, 60 sec: 3618.1, 300 sec: 3540.6). Total num frames: 3465216. Throughput: 0: 889.1. Samples: 363470. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
3488
+ [2023-07-04 15:49:23,450][18333] Avg episode reward: [(0, '22.627')]
3489
+ [2023-07-04 15:49:28,447][18333] Fps is (10 sec: 3685.1, 60 sec: 3617.9, 300 sec: 3512.8). Total num frames: 3477504. Throughput: 0: 890.7. Samples: 368512. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
3490
+ [2023-07-04 15:49:28,450][18333] Avg episode reward: [(0, '22.567')]
3491
+ [2023-07-04 15:49:28,852][22126] Updated weights for policy 0, policy_version 850 (0.0016)
3492
+ [2023-07-04 15:49:33,444][18333] Fps is (10 sec: 2867.2, 60 sec: 3549.9, 300 sec: 3512.9). Total num frames: 3493888. Throughput: 0: 889.2. Samples: 370536. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
3493
+ [2023-07-04 15:49:33,449][18333] Avg episode reward: [(0, '21.095')]
3494
+ [2023-07-04 15:49:38,444][18333] Fps is (10 sec: 3278.0, 60 sec: 3413.3, 300 sec: 3526.7). Total num frames: 3510272. Throughput: 0: 886.3. Samples: 375020. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
3495
+ [2023-07-04 15:49:38,446][18333] Avg episode reward: [(0, '19.977')]
3496
+ [2023-07-04 15:49:40,792][22126] Updated weights for policy 0, policy_version 860 (0.0012)
3497
+ [2023-07-04 15:49:43,444][18333] Fps is (10 sec: 3686.4, 60 sec: 3549.9, 300 sec: 3512.8). Total num frames: 3530752. Throughput: 0: 888.2. Samples: 381666. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
3498
+ [2023-07-04 15:49:43,448][18333] Avg episode reward: [(0, '21.107')]
3499
+ [2023-07-04 15:49:48,444][18333] Fps is (10 sec: 4096.0, 60 sec: 3618.1, 300 sec: 3512.8). Total num frames: 3551232. Throughput: 0: 888.3. Samples: 385078. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
3500
+ [2023-07-04 15:49:48,450][18333] Avg episode reward: [(0, '21.707')]
3501
+ [2023-07-04 15:49:52,023][22126] Updated weights for policy 0, policy_version 870 (0.0027)
3502
+ [2023-07-04 15:49:53,444][18333] Fps is (10 sec: 3276.8, 60 sec: 3549.9, 300 sec: 3512.8). Total num frames: 3563520. Throughput: 0: 889.1. Samples: 389490. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
3503
+ [2023-07-04 15:49:53,449][18333] Avg episode reward: [(0, '22.408')]
3504
+ [2023-07-04 15:49:58,444][18333] Fps is (10 sec: 2867.2, 60 sec: 3481.6, 300 sec: 3512.8). Total num frames: 3579904. Throughput: 0: 890.4. Samples: 393826. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
3505
+ [2023-07-04 15:49:58,450][18333] Avg episode reward: [(0, '22.977')]
3506
+ [2023-07-04 15:49:58,463][22113] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000874_3579904.pth...
3507
+ [2023-07-04 15:49:58,653][22113] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000669_2740224.pth
3508
+ [2023-07-04 15:50:03,444][18333] Fps is (10 sec: 3686.4, 60 sec: 3481.6, 300 sec: 3526.7). Total num frames: 3600384. Throughput: 0: 886.4. Samples: 396600. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
3509
+ [2023-07-04 15:50:03,450][18333] Avg episode reward: [(0, '23.005')]
3510
+ [2023-07-04 15:50:03,827][22126] Updated weights for policy 0, policy_version 880 (0.0014)
3511
+ [2023-07-04 15:50:08,445][18333] Fps is (10 sec: 4095.3, 60 sec: 3618.3, 300 sec: 3526.7). Total num frames: 3620864. Throughput: 0: 881.2. Samples: 403124. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
3512
+ [2023-07-04 15:50:08,448][18333] Avg episode reward: [(0, '24.137')]
3513
+ [2023-07-04 15:50:13,444][18333] Fps is (10 sec: 3686.4, 60 sec: 3618.2, 300 sec: 3512.8). Total num frames: 3637248. Throughput: 0: 884.1. Samples: 408292. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
3514
+ [2023-07-04 15:50:13,449][18333] Avg episode reward: [(0, '24.242')]
3515
+ [2023-07-04 15:50:15,313][22126] Updated weights for policy 0, policy_version 890 (0.0015)
3516
+ [2023-07-04 15:50:18,444][18333] Fps is (10 sec: 3277.4, 60 sec: 3549.9, 300 sec: 3526.7). Total num frames: 3653632. Throughput: 0: 886.8. Samples: 410444. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
3517
+ [2023-07-04 15:50:18,450][18333] Avg episode reward: [(0, '23.530')]
3518
+ [2023-07-04 15:50:23,444][18333] Fps is (10 sec: 3276.8, 60 sec: 3413.3, 300 sec: 3526.7). Total num frames: 3670016. Throughput: 0: 883.8. Samples: 414790. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
3519
+ [2023-07-04 15:50:23,448][18333] Avg episode reward: [(0, '22.577')]
3520
+ [2023-07-04 15:50:26,894][22126] Updated weights for policy 0, policy_version 900 (0.0023)
3521
+ [2023-07-04 15:50:28,444][18333] Fps is (10 sec: 3686.4, 60 sec: 3550.1, 300 sec: 3526.7). Total num frames: 3690496. Throughput: 0: 880.9. Samples: 421306. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
3522
+ [2023-07-04 15:50:28,446][18333] Avg episode reward: [(0, '23.107')]
3523
+ [2023-07-04 15:50:33,444][18333] Fps is (10 sec: 4096.1, 60 sec: 3618.1, 300 sec: 3526.7). Total num frames: 3710976. Throughput: 0: 878.8. Samples: 424622. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
3524
+ [2023-07-04 15:50:33,446][18333] Avg episode reward: [(0, '24.071')]
3525
+ [2023-07-04 15:50:38,425][22126] Updated weights for policy 0, policy_version 910 (0.0012)
3526
+ [2023-07-04 15:50:38,444][18333] Fps is (10 sec: 3686.4, 60 sec: 3618.1, 300 sec: 3526.8). Total num frames: 3727360. Throughput: 0: 882.0. Samples: 429182. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
3527
+ [2023-07-04 15:50:38,445][18333] Avg episode reward: [(0, '23.988')]
3528
+ [2023-07-04 15:50:43,445][18333] Fps is (10 sec: 2866.7, 60 sec: 3481.5, 300 sec: 3526.7). Total num frames: 3739648. Throughput: 0: 882.1. Samples: 433522. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
3529
+ [2023-07-04 15:50:43,448][18333] Avg episode reward: [(0, '23.037')]
3530
+ [2023-07-04 15:50:48,444][18333] Fps is (10 sec: 3276.8, 60 sec: 3481.6, 300 sec: 3540.6). Total num frames: 3760128. Throughput: 0: 879.2. Samples: 436166. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
3531
+ [2023-07-04 15:50:48,451][18333] Avg episode reward: [(0, '24.210')]
3532
+ [2023-07-04 15:50:49,985][22126] Updated weights for policy 0, policy_version 920 (0.0040)
3533
+ [2023-07-04 15:50:53,444][18333] Fps is (10 sec: 4096.7, 60 sec: 3618.1, 300 sec: 3526.7). Total num frames: 3780608. Throughput: 0: 883.6. Samples: 442886. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
3534
+ [2023-07-04 15:50:53,452][18333] Avg episode reward: [(0, '25.008')]
3535
+ [2023-07-04 15:50:53,455][22113] Saving new best policy, reward=25.008!
3536
+ [2023-07-04 15:50:58,444][18333] Fps is (10 sec: 3686.4, 60 sec: 3618.1, 300 sec: 3526.8). Total num frames: 3796992. Throughput: 0: 882.3. Samples: 447996. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
3537
+ [2023-07-04 15:50:58,450][18333] Avg episode reward: [(0, '24.569')]
3538
+ [2023-07-04 15:51:02,192][22126] Updated weights for policy 0, policy_version 930 (0.0018)
3539
+ [2023-07-04 15:51:03,444][18333] Fps is (10 sec: 2867.0, 60 sec: 3481.6, 300 sec: 3512.8). Total num frames: 3809280. Throughput: 0: 880.2. Samples: 450052. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
3540
+ [2023-07-04 15:51:03,449][18333] Avg episode reward: [(0, '24.889')]
3541
+ [2023-07-04 15:51:08,444][18333] Fps is (10 sec: 3276.8, 60 sec: 3481.7, 300 sec: 3540.6). Total num frames: 3829760. Throughput: 0: 878.9. Samples: 454340. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
3542
+ [2023-07-04 15:51:08,446][18333] Avg episode reward: [(0, '23.066')]
3543
+ [2023-07-04 15:51:13,187][22126] Updated weights for policy 0, policy_version 940 (0.0021)
3544
+ [2023-07-04 15:51:13,444][18333] Fps is (10 sec: 4096.3, 60 sec: 3549.9, 300 sec: 3540.6). Total num frames: 3850240. Throughput: 0: 883.0. Samples: 461040. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
3545
+ [2023-07-04 15:51:13,446][18333] Avg episode reward: [(0, '21.575')]
3546
+ [2023-07-04 15:51:18,444][18333] Fps is (10 sec: 4096.0, 60 sec: 3618.1, 300 sec: 3526.7). Total num frames: 3870720. Throughput: 0: 884.0. Samples: 464404. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
3547
+ [2023-07-04 15:51:18,450][18333] Avg episode reward: [(0, '21.145')]
3548
+ [2023-07-04 15:51:23,444][18333] Fps is (10 sec: 3276.8, 60 sec: 3549.9, 300 sec: 3526.7). Total num frames: 3883008. Throughput: 0: 887.0. Samples: 469096. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
3549
+ [2023-07-04 15:51:23,450][18333] Avg episode reward: [(0, '21.746')]
3550
+ [2023-07-04 15:51:25,562][22126] Updated weights for policy 0, policy_version 950 (0.0019)
3551
+ [2023-07-04 15:51:28,444][18333] Fps is (10 sec: 2867.2, 60 sec: 3481.6, 300 sec: 3526.7). Total num frames: 3899392. Throughput: 0: 883.7. Samples: 473286. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
3552
+ [2023-07-04 15:51:28,445][18333] Avg episode reward: [(0, '20.778')]
3553
+ [2023-07-04 15:51:33,443][18333] Fps is (10 sec: 3686.4, 60 sec: 3481.6, 300 sec: 3540.6). Total num frames: 3919872. Throughput: 0: 882.5. Samples: 475878. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
3554
+ [2023-07-04 15:51:33,447][18333] Avg episode reward: [(0, '22.279')]
3555
+ [2023-07-04 15:51:36,134][22126] Updated weights for policy 0, policy_version 960 (0.0030)
3556
+ [2023-07-04 15:51:38,444][18333] Fps is (10 sec: 4096.0, 60 sec: 3549.9, 300 sec: 3540.6). Total num frames: 3940352. Throughput: 0: 883.6. Samples: 482650. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
3557
+ [2023-07-04 15:51:38,446][18333] Avg episode reward: [(0, '22.723')]
3558
+ [2023-07-04 15:51:43,444][18333] Fps is (10 sec: 3686.4, 60 sec: 3618.2, 300 sec: 3526.7). Total num frames: 3956736. Throughput: 0: 889.6. Samples: 488030. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
3559
+ [2023-07-04 15:51:43,449][18333] Avg episode reward: [(0, '23.297')]
3560
+ [2023-07-04 15:51:48,444][18333] Fps is (10 sec: 2867.2, 60 sec: 3481.6, 300 sec: 3526.7). Total num frames: 3969024. Throughput: 0: 890.3. Samples: 490116. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
3561
+ [2023-07-04 15:51:48,450][18333] Avg episode reward: [(0, '24.658')]
3562
+ [2023-07-04 15:51:48,604][22126] Updated weights for policy 0, policy_version 970 (0.0014)
3563
+ [2023-07-04 15:51:53,444][18333] Fps is (10 sec: 3276.7, 60 sec: 3481.6, 300 sec: 3540.6). Total num frames: 3989504. Throughput: 0: 890.2. Samples: 494398. Policy #0 lag: (min: 0.0, avg: 0.3, max: 1.0)
3564
+ [2023-07-04 15:51:53,446][18333] Avg episode reward: [(0, '23.262')]
3565
+ [2023-07-04 15:51:57,392][22113] Stopping Batcher_0...
3566
+ [2023-07-04 15:51:57,394][22113] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
3567
+ [2023-07-04 15:51:57,395][18333] Component Batcher_0 stopped!
3568
+ [2023-07-04 15:51:57,395][22113] Loop batcher_evt_loop terminating...
3569
+ [2023-07-04 15:51:57,459][18333] Component RolloutWorker_w0 stopped!
3570
+ [2023-07-04 15:51:57,460][22138] Stopping RolloutWorker_w7...
3571
+ [2023-07-04 15:51:57,465][18333] Component RolloutWorker_w7 stopped!
3572
+ [2023-07-04 15:51:57,473][22138] Loop rollout_proc7_evt_loop terminating...
3573
+ [2023-07-04 15:51:57,470][22130] Stopping RolloutWorker_w0...
3574
+ [2023-07-04 15:51:57,479][18333] Component RolloutWorker_w2 stopped!
3575
+ [2023-07-04 15:51:57,484][22134] Stopping RolloutWorker_w2...
3576
+ [2023-07-04 15:51:57,478][22126] Weights refcount: 2 0
3577
+ [2023-07-04 15:51:57,474][22130] Loop rollout_proc0_evt_loop terminating...
3578
+ [2023-07-04 15:51:57,492][22136] Stopping RolloutWorker_w5...
3579
+ [2023-07-04 15:51:57,491][18333] Component InferenceWorker_p0-w0 stopped!
3580
+ [2023-07-04 15:51:57,496][22132] Stopping RolloutWorker_w3...
3581
+ [2023-07-04 15:51:57,496][18333] Component RolloutWorker_w5 stopped!
3582
+ [2023-07-04 15:51:57,500][18333] Component RolloutWorker_w3 stopped!
3583
+ [2023-07-04 15:51:57,493][22136] Loop rollout_proc5_evt_loop terminating...
3584
+ [2023-07-04 15:51:57,497][22132] Loop rollout_proc3_evt_loop terminating...
3585
+ [2023-07-04 15:51:57,505][22126] Stopping InferenceWorker_p0-w0...
3586
+ [2023-07-04 15:51:57,506][18333] Component RolloutWorker_w1 stopped!
3587
+ [2023-07-04 15:51:57,506][22133] Stopping RolloutWorker_w1...
3588
+ [2023-07-04 15:51:57,505][22126] Loop inference_proc0-0_evt_loop terminating...
3589
+ [2023-07-04 15:51:57,485][22134] Loop rollout_proc2_evt_loop terminating...
3590
+ [2023-07-04 15:51:57,510][22133] Loop rollout_proc1_evt_loop terminating...
3591
+ [2023-07-04 15:51:57,520][18333] Component RolloutWorker_w4 stopped!
3592
+ [2023-07-04 15:51:57,524][22135] Stopping RolloutWorker_w4...
3593
+ [2023-07-04 15:51:57,525][18333] Component RolloutWorker_w6 stopped!
3594
+ [2023-07-04 15:51:57,531][22137] Stopping RolloutWorker_w6...
3595
+ [2023-07-04 15:51:57,538][22135] Loop rollout_proc4_evt_loop terminating...
3596
+ [2023-07-04 15:51:57,532][22137] Loop rollout_proc6_evt_loop terminating...
3597
+ [2023-07-04 15:51:57,552][22113] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000771_3158016.pth
3598
+ [2023-07-04 15:51:57,564][22113] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
3599
+ [2023-07-04 15:51:57,729][18333] Component LearnerWorker_p0 stopped!
3600
+ [2023-07-04 15:51:57,736][18333] Waiting for process learner_proc0 to stop...
3601
+ [2023-07-04 15:51:57,741][22113] Stopping LearnerWorker_p0...
3602
+ [2023-07-04 15:51:57,741][22113] Loop learner_proc0_evt_loop terminating...
3603
+ [2023-07-04 15:51:58,816][18333] Waiting for process inference_proc0-0 to join...
3604
+ [2023-07-04 15:51:58,821][18333] Waiting for process rollout_proc0 to join...
3605
+ [2023-07-04 15:52:00,036][18333] Waiting for process rollout_proc1 to join...
3606
+ [2023-07-04 15:52:00,199][18333] Waiting for process rollout_proc2 to join...
3607
+ [2023-07-04 15:52:00,201][18333] Waiting for process rollout_proc3 to join...
3608
+ [2023-07-04 15:52:00,205][18333] Waiting for process rollout_proc4 to join...
3609
+ [2023-07-04 15:52:00,208][18333] Waiting for process rollout_proc5 to join...
3610
+ [2023-07-04 15:52:00,211][18333] Waiting for process rollout_proc6 to join...
3611
+ [2023-07-04 15:52:00,215][18333] Waiting for process rollout_proc7 to join...
3612
+ [2023-07-04 15:52:00,217][18333] Batcher 0 profile tree view:
3613
+ batching: 13.2010, releasing_batches: 0.0137
3614
+ [2023-07-04 15:52:00,228][18333] InferenceWorker_p0-w0 profile tree view:
3615
+ wait_policy: 0.0055
3616
+ wait_policy_total: 279.2133
3617
+ update_model: 4.1925
3618
+ weight_update: 0.0025
3619
+ one_step: 0.0025
3620
+ handle_policy_step: 276.3185
3621
+ deserialize: 7.4829, stack: 1.5020, obs_to_device_normalize: 59.2136, forward: 138.0503, send_messages: 14.2878
3622
+ prepare_outputs: 42.0752
3623
+ to_cpu: 25.6465
3624
+ [2023-07-04 15:52:00,230][18333] Learner 0 profile tree view:
3625
+ misc: 0.0025, prepare_batch: 9.8375
3626
+ train: 39.7930
3627
+ epoch_init: 0.0146, minibatch_init: 0.0032, losses_postprocess: 0.2770, kl_divergence: 0.3191, after_optimizer: 1.9968
3628
+ calculate_losses: 12.3821
3629
+ losses_init: 0.0018, forward_head: 1.0349, bptt_initial: 7.7057, tail: 0.5452, advantages_returns: 0.1694, losses: 1.6271
3630
+ bptt: 1.1473
3631
+ bptt_forward_core: 1.0992
3632
+ update: 24.4481
3633
+ clip: 0.7666
3634
+ [2023-07-04 15:52:00,231][18333] RolloutWorker_w0 profile tree view:
3635
+ wait_for_trajectories: 0.2117, enqueue_policy_requests: 75.9103, env_step: 429.9611, overhead: 11.8503, complete_rollouts: 3.8320
3636
+ save_policy_outputs: 10.6986
3637
+ split_output_tensors: 5.2931
3638
+ [2023-07-04 15:52:00,234][18333] RolloutWorker_w7 profile tree view:
3639
+ wait_for_trajectories: 0.1973, enqueue_policy_requests: 80.5694, env_step: 427.3777, overhead: 11.8470, complete_rollouts: 3.6744
3640
+ save_policy_outputs: 10.4136
3641
+ split_output_tensors: 5.1270
3642
+ [2023-07-04 15:52:00,236][18333] Loop Runner_EvtLoop terminating...
3643
+ [2023-07-04 15:52:00,239][18333] Runner profile tree view:
3644
+ main_loop: 600.1708
3645
+ [2023-07-04 15:52:00,244][18333] Collected {0: 4005888}, FPS: 3330.5
3646
+ [2023-07-04 15:52:13,757][18333] Loading existing experiment configuration from /content/train_dir/default_experiment/config.json
3647
+ [2023-07-04 15:52:13,759][18333] Overriding arg 'num_workers' with value 1 passed from command line
3648
+ [2023-07-04 15:52:13,761][18333] Adding new argument 'no_render'=True that is not in the saved config file!
3649
+ [2023-07-04 15:52:13,763][18333] Adding new argument 'save_video'=True that is not in the saved config file!
3650
+ [2023-07-04 15:52:13,764][18333] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
3651
+ [2023-07-04 15:52:13,766][18333] Adding new argument 'video_name'=None that is not in the saved config file!
3652
+ [2023-07-04 15:52:13,768][18333] Adding new argument 'max_num_frames'=100000 that is not in the saved config file!
3653
+ [2023-07-04 15:52:13,770][18333] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
3654
+ [2023-07-04 15:52:13,771][18333] Adding new argument 'push_to_hub'=True that is not in the saved config file!
3655
+ [2023-07-04 15:52:13,772][18333] Adding new argument 'hf_repository'='HilbertS/rl_course_vizdoom_health_gathering_supreme' that is not in the saved config file!
3656
+ [2023-07-04 15:52:13,773][18333] Adding new argument 'policy_index'=0 that is not in the saved config file!
3657
+ [2023-07-04 15:52:13,775][18333] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
3658
+ [2023-07-04 15:52:13,776][18333] Adding new argument 'train_script'=None that is not in the saved config file!
3659
+ [2023-07-04 15:52:13,777][18333] Adding new argument 'enjoy_script'=None that is not in the saved config file!
3660
+ [2023-07-04 15:52:13,778][18333] Using frameskip 1 and render_action_repeat=4 for evaluation
3661
+ [2023-07-04 15:52:13,801][18333] RunningMeanStd input shape: (3, 72, 128)
3662
+ [2023-07-04 15:52:13,803][18333] RunningMeanStd input shape: (1,)
3663
+ [2023-07-04 15:52:13,817][18333] ConvEncoder: input_channels=3
3664
+ [2023-07-04 15:52:13,852][18333] Conv encoder output size: 512
3665
+ [2023-07-04 15:52:13,853][18333] Policy head output size: 512
3666
+ [2023-07-04 15:52:13,874][18333] Loading state from checkpoint /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
3667
+ [2023-07-04 15:52:14,537][18333] Num frames 100...
3668
+ [2023-07-04 15:52:14,657][18333] Num frames 200...
3669
+ [2023-07-04 15:52:14,787][18333] Num frames 300...
3670
+ [2023-07-04 15:52:14,937][18333] Num frames 400...
3671
+ [2023-07-04 15:52:15,068][18333] Num frames 500...
3672
+ [2023-07-04 15:52:15,218][18333] Num frames 600...
3673
+ [2023-07-04 15:52:15,353][18333] Num frames 700...
3674
+ [2023-07-04 15:52:15,493][18333] Num frames 800...
3675
+ [2023-07-04 15:52:15,632][18333] Num frames 900...
3676
+ [2023-07-04 15:52:15,754][18333] Num frames 1000...
3677
+ [2023-07-04 15:52:15,938][18333] Num frames 1100...
3678
+ [2023-07-04 15:52:16,144][18333] Num frames 1200...
3679
+ [2023-07-04 15:52:16,329][18333] Num frames 1300...
3680
+ [2023-07-04 15:52:16,515][18333] Num frames 1400...
3681
+ [2023-07-04 15:52:16,694][18333] Num frames 1500...
3682
+ [2023-07-04 15:52:16,885][18333] Num frames 1600...
3683
+ [2023-07-04 15:52:17,064][18333] Num frames 1700...
3684
+ [2023-07-04 15:52:17,250][18333] Num frames 1800...
3685
+ [2023-07-04 15:52:17,430][18333] Num frames 1900...
3686
+ [2023-07-04 15:52:17,609][18333] Num frames 2000...
3687
+ [2023-07-04 15:52:17,785][18333] Num frames 2100...
3688
+ [2023-07-04 15:52:17,840][18333] Avg episode rewards: #0: 54.999, true rewards: #0: 21.000
3689
+ [2023-07-04 15:52:17,843][18333] Avg episode reward: 54.999, avg true_objective: 21.000
3690
+ [2023-07-04 15:52:18,019][18333] Num frames 2200...
3691
+ [2023-07-04 15:52:18,202][18333] Num frames 2300...
3692
+ [2023-07-04 15:52:18,390][18333] Num frames 2400...
3693
+ [2023-07-04 15:52:18,579][18333] Num frames 2500...
3694
+ [2023-07-04 15:52:18,764][18333] Num frames 2600...
3695
+ [2023-07-04 15:52:18,945][18333] Num frames 2700...
3696
+ [2023-07-04 15:52:19,127][18333] Num frames 2800...
3697
+ [2023-07-04 15:52:19,311][18333] Num frames 2900...
3698
+ [2023-07-04 15:52:19,510][18333] Num frames 3000...
3699
+ [2023-07-04 15:52:19,694][18333] Num frames 3100...
3700
+ [2023-07-04 15:52:19,882][18333] Num frames 3200...
3701
+ [2023-07-04 15:52:20,067][18333] Num frames 3300...
3702
+ [2023-07-04 15:52:20,251][18333] Num frames 3400...
3703
+ [2023-07-04 15:52:20,436][18333] Num frames 3500...
3704
+ [2023-07-04 15:52:20,617][18333] Num frames 3600...
3705
+ [2023-07-04 15:52:20,802][18333] Num frames 3700...
3706
+ [2023-07-04 15:52:21,035][18333] Avg episode rewards: #0: 48.979, true rewards: #0: 18.980
3707
+ [2023-07-04 15:52:21,037][18333] Avg episode reward: 48.979, avg true_objective: 18.980
3708
+ [2023-07-04 15:52:21,047][18333] Num frames 3800...
3709
+ [2023-07-04 15:52:21,222][18333] Num frames 3900...
3710
+ [2023-07-04 15:52:21,353][18333] Num frames 4000...
3711
+ [2023-07-04 15:52:21,484][18333] Avg episode rewards: #0: 33.506, true rewards: #0: 13.507
3712
+ [2023-07-04 15:52:21,486][18333] Avg episode reward: 33.506, avg true_objective: 13.507
3713
+ [2023-07-04 15:52:21,552][18333] Num frames 4100...
3714
+ [2023-07-04 15:52:21,678][18333] Num frames 4200...
3715
+ [2023-07-04 15:52:21,808][18333] Num frames 4300...
3716
+ [2023-07-04 15:52:21,935][18333] Num frames 4400...
3717
+ [2023-07-04 15:52:22,072][18333] Num frames 4500...
3718
+ [2023-07-04 15:52:22,198][18333] Num frames 4600...
3719
+ [2023-07-04 15:52:22,332][18333] Num frames 4700...
3720
+ [2023-07-04 15:52:22,462][18333] Num frames 4800...
3721
+ [2023-07-04 15:52:22,603][18333] Num frames 4900...
3722
+ [2023-07-04 15:52:22,735][18333] Num frames 5000...
3723
+ [2023-07-04 15:52:22,869][18333] Num frames 5100...
3724
+ [2023-07-04 15:52:23,009][18333] Num frames 5200...
3725
+ [2023-07-04 15:52:23,142][18333] Num frames 5300...
3726
+ [2023-07-04 15:52:23,285][18333] Num frames 5400...
3727
+ [2023-07-04 15:52:23,422][18333] Num frames 5500...
3728
+ [2023-07-04 15:52:23,551][18333] Num frames 5600...
3729
+ [2023-07-04 15:52:23,632][18333] Avg episode rewards: #0: 35.050, true rewards: #0: 14.050
3730
+ [2023-07-04 15:52:23,634][18333] Avg episode reward: 35.050, avg true_objective: 14.050
3731
+ [2023-07-04 15:52:23,740][18333] Num frames 5700...
3732
+ [2023-07-04 15:52:23,866][18333] Num frames 5800...
3733
+ [2023-07-04 15:52:23,992][18333] Num frames 5900...
3734
+ [2023-07-04 15:52:24,140][18333] Avg episode rewards: #0: 28.944, true rewards: #0: 11.944
3735
+ [2023-07-04 15:52:24,145][18333] Avg episode reward: 28.944, avg true_objective: 11.944
3736
+ [2023-07-04 15:52:24,180][18333] Num frames 6000...
3737
+ [2023-07-04 15:52:24,305][18333] Num frames 6100...
3738
+ [2023-07-04 15:52:24,485][18333] Avg episode rewards: #0: 24.493, true rewards: #0: 10.327
3739
+ [2023-07-04 15:52:24,487][18333] Avg episode reward: 24.493, avg true_objective: 10.327
3740
+ [2023-07-04 15:52:24,497][18333] Num frames 6200...
3741
+ [2023-07-04 15:52:24,632][18333] Num frames 6300...
3742
+ [2023-07-04 15:52:24,754][18333] Num frames 6400...
3743
+ [2023-07-04 15:52:24,880][18333] Num frames 6500...
3744
+ [2023-07-04 15:52:24,999][18333] Num frames 6600...
3745
+ [2023-07-04 15:52:25,128][18333] Num frames 6700...
3746
+ [2023-07-04 15:52:25,257][18333] Num frames 6800...
3747
+ [2023-07-04 15:52:25,402][18333] Num frames 6900...
3748
+ [2023-07-04 15:52:25,545][18333] Num frames 7000...
3749
+ [2023-07-04 15:52:25,669][18333] Num frames 7100...
3750
+ [2023-07-04 15:52:25,796][18333] Num frames 7200...
3751
+ [2023-07-04 15:52:25,922][18333] Num frames 7300...
3752
+ [2023-07-04 15:52:26,053][18333] Num frames 7400...
3753
+ [2023-07-04 15:52:26,199][18333] Num frames 7500...
3754
+ [2023-07-04 15:52:26,327][18333] Num frames 7600...
3755
+ [2023-07-04 15:52:26,475][18333] Avg episode rewards: #0: 26.954, true rewards: #0: 10.954
3756
+ [2023-07-04 15:52:26,478][18333] Avg episode reward: 26.954, avg true_objective: 10.954
3757
+ [2023-07-04 15:52:26,517][18333] Num frames 7700...
3758
+ [2023-07-04 15:52:26,643][18333] Num frames 7800...
3759
+ [2023-07-04 15:52:26,774][18333] Num frames 7900...
3760
+ [2023-07-04 15:52:26,895][18333] Num frames 8000...
3761
+ [2023-07-04 15:52:27,014][18333] Num frames 8100...
3762
+ [2023-07-04 15:52:27,138][18333] Num frames 8200...
3763
+ [2023-07-04 15:52:27,258][18333] Num frames 8300...
3764
+ [2023-07-04 15:52:27,380][18333] Num frames 8400...
3765
+ [2023-07-04 15:52:27,517][18333] Num frames 8500...
3766
+ [2023-07-04 15:52:27,656][18333] Avg episode rewards: #0: 25.955, true rewards: #0: 10.705
3767
+ [2023-07-04 15:52:27,658][18333] Avg episode reward: 25.955, avg true_objective: 10.705
3768
+ [2023-07-04 15:52:27,703][18333] Num frames 8600...
3769
+ [2023-07-04 15:52:27,870][18333] Avg episode rewards: #0: 23.213, true rewards: #0: 9.658
3770
+ [2023-07-04 15:52:27,872][18333] Avg episode reward: 23.213, avg true_objective: 9.658
3771
+ [2023-07-04 15:52:27,885][18333] Num frames 8700...
3772
+ [2023-07-04 15:52:28,010][18333] Num frames 8800...
3773
+ [2023-07-04 15:52:28,130][18333] Num frames 8900...
3774
+ [2023-07-04 15:52:28,258][18333] Num frames 9000...
3775
+ [2023-07-04 15:52:28,381][18333] Num frames 9100...
3776
+ [2023-07-04 15:52:28,518][18333] Num frames 9200...
3777
+ [2023-07-04 15:52:28,579][18333] Avg episode rewards: #0: 21.704, true rewards: #0: 9.204
3778
+ [2023-07-04 15:52:28,581][18333] Avg episode reward: 21.704, avg true_objective: 9.204
3779
+ [2023-07-04 15:53:26,952][18333] Replay video saved to /content/train_dir/default_experiment/replay.mp4!