{"policy_class": {":type:": "", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f832c9e1f40>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 482676, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685356838528793194, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA3fotv1m7Oj+05EC/3IqPPchgE79ILcU/kQsUv6uixjsTUIY/8E0WPhlxir7WmqM/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAQ5Iyv8hRQz99tVO/8RGVPQ+KD7/53sw/KLQQv0rvBz1jZYw/js42PvRKg74nbKk/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADd+i2/Wbs6P7TkQL+cpLA9Ncm8PMqLtTzcio89yGATv0gtxT/REaI9myLRPGDv57yRCxS/q6LGOxNQhj8AMXq9VoHvPD4wiL3wTRY+GXGKvtaaoz+ghSc9KeewPHbVS72UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[-0.6796091 0.7294212 -0.75348973]\n [ 0.07008907 -0.5756955 1.5404444 ]\n [-0.5783015 0.00606187 1.0493187 ]\n [ 0.14678168 -0.27039412 1.2781627 ]]", "desired_goal": "[[-0.6975443 0.76296663 -0.82698804]\n [ 0.07278813 -0.56070036 1.6005546 ]\n [-0.56524897 0.03318719 1.0968441 ]\n [ 0.17852232 -0.25643122 1.323613 ]]", "observation": "[[-0.6796091 0.7294212 -0.75348973 0.08625147 0.02304516 0.02216138]\n [ 0.07008907 -0.5756955 1.5404444 0.07913554 0.0255292 -0.02831239]\n [-0.5783015 0.00606187 1.0493187 -0.06108189 0.02923648 -0.06649826]\n [ 0.14678168 -0.27039412 1.2781627 0.04089892 0.0215946 -0.04976412]]"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAdI8JPmI/Cr5VaKE9IfgVvSK1AT4cOiQ+Orj7vDTu0z0hSow8mYIbPe5/PD32BTo+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.1343363 -0.13500741 0.07881228]\n [-0.03661359 0.12666753 0.16037792]\n [-0.03072749 0.10348168 0.01712519]\n [ 0.03796634 0.04602044 0.18166336]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.51734, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIUDqRYKqZ4L+UhpRSlIwBbJRLMowBdJRHQJeyGX1J17p1fZQoaAZoCWgPQwjqWnufqkLfv5SGlFKUaBVLMmgWR0CXsZNUwSJ1dX2UKGgGaAloD0MIoG8LluqC4L+UhpRSlGgVSzJoFkdAl7EaQ/5cknV9lChoBmgJaA9DCK00KQXdXtS/lIaUUpRoFUsyaBZHQJewoJAt4A11fZQoaAZoCWgPQwj+YUuPpnrXv5SGlFKUaBVLMmgWR0CXtGis4ku6dX2UKGgGaAloD0MIqYQn9PoT4b+UhpRSlGgVSzJoFkdAl7PiYXwb2nV9lChoBmgJaA9DCMvapnhc1OW/lIaUUpRoFUsyaBZHQJezaXa8HwB1fZQoaAZoCWgPQwitF0M50a7Wv5SGlFKUaBVLMmgWR0CXsu+rELpidX2UKGgGaAloD0MIZ3xfXKpS4r+UhpRSlGgVSzJoFkdAl7aikGiYcHV9lChoBmgJaA9DCK6cvTPaKuG/lIaUUpRoFUsyaBZHQJe2HEFW4mV1fZQoaAZoCWgPQwg/pyA/Gznlv5SGlFKUaBVLMmgWR0CXtaM/QjUvdX2UKGgGaAloD0MI4NqJkpDI47+UhpRSlGgVSzJoFkdAl7UpkPMB63V9lChoBmgJaA9DCJn1Yign2uu/lIaUUpRoFUsyaBZHQJe4949ovi91fZQoaAZoCWgPQwg1mIbhI2Lgv5SGlFKUaBVLMmgWR0CXuHESuhbodX2UKGgGaAloD0MIa/C+Khcq37+UhpRSlGgVSzJoFkdAl7f4BeXzDnV9lChoBmgJaA9DCDNUxVT6ieO/lIaUUpRoFUsyaBZHQJe3fjsD4g11fZQoaAZoCWgPQwge4EkLl9Xuv5SGlFKUaBVLMmgWR0CXuys8xKxtdX2UKGgGaAloD0MI+Um1T8fj5r+UhpRSlGgVSzJoFkdAl7qk6HTJAHV9lChoBmgJaA9DCLQ6OUNxx+C/lIaUUpRoFUsyaBZHQJe6K/nGKht1fZQoaAZoCWgPQwiY/E/+7h3fv5SGlFKUaBVLMmgWR0CXubKIi1RcdX2UKGgGaAloD0MIRaD6B5EM3b+UhpRSlGgVSzJoFkdAl71sW0qpcXV9lChoBmgJaA9DCBYx7DAmfeK/lIaUUpRoFUsyaBZHQJe85gpjMFF1fZQoaAZoCWgPQwjNkgA1tWzXv5SGlFKUaBVLMmgWR0CXvG0P6KtQdX2UKGgGaAloD0MIBFd5AmGn3b+UhpRSlGgVSzJoFkdAl7vzQAuIynV9lChoBmgJaA9DCF3+Q/rt6+S/lIaUUpRoFUsyaBZHQJe/nhsImgJ1fZQoaAZoCWgPQwhTPC6qRUTjv5SGlFKUaBVLMmgWR0CXvxfdyksSdX2UKGgGaAloD0MIpHGo34Ut6b+UhpRSlGgVSzJoFkdAl76e+IuXeHV9lChoBmgJaA9DCACQEyaMZtC/lIaUUpRoFUsyaBZHQJe+JVrAP/d1fZQoaAZoCWgPQwj/HydMGE3hv5SGlFKUaBVLMmgWR0CXwdCr92ovdX2UKGgGaAloD0MIdy0hH/Rs4r+UhpRSlGgVSzJoFkdAl8FJ/G2kSHV9lChoBmgJaA9DCC7kEdxI2d2/lIaUUpRoFUsyaBZHQJfA0PQOWjZ1fZQoaAZoCWgPQwhHdxA7U+jdv5SGlFKUaBVLMmgWR0CXwFd7v5P/dX2UKGgGaAloD0MITFEujV946b+UhpRSlGgVSzJoFkdAl8S/lZHNHHV9lChoBmgJaA9DCMSxLm6jgee/lIaUUpRoFUsyaBZHQJfEOvnr6cl1fZQoaAZoCWgPQwgrwk1GleHmv5SGlFKUaBVLMmgWR0CXw8QeFL39dX2UKGgGaAloD0MIa9PYXgt647+UhpRSlGgVSzJoFkdAl8NLsv7FbXV9lChoBmgJaA9DCKEsfH2ty+C/lIaUUpRoFUsyaBZHQJfIe9XcQAd1fZQoaAZoCWgPQwgs2EY82c3mv5SGlFKUaBVLMmgWR0CXx/d2Pkq+dX2UKGgGaAloD0MI0cq9wKzQ4r+UhpRSlGgVSzJoFkdAl8eAj6eoUHV9lChoBmgJaA9DCChHAaJgRuC/lIaUUpRoFUsyaBZHQJfHCQRwqAl1fZQoaAZoCWgPQwhcBMb6Bibbv5SGlFKUaBVLMmgWR0CXzHgvDgqFdX2UKGgGaAloD0MI6glLPKBs27+UhpRSlGgVSzJoFkdAl8vzWbwz+HV9lChoBmgJaA9DCHpSJjW0gei/lIaUUpRoFUsyaBZHQJfLe87IT5B1fZQoaAZoCWgPQwhpdAexM4Xfv5SGlFKUaBVLMmgWR0CXywO/tY0VdX2UKGgGaAloD0MIFAmmmllL27+UhpRSlGgVSzJoFkdAl9Buu3c583V9lChoBmgJaA9DCJs4ud+hKOG/lIaUUpRoFUsyaBZHQJfP6eQMhHN1fZQoaAZoCWgPQwggDDz3Hq7ov5SGlFKUaBVLMmgWR0CXz3KT0QK8dX2UKGgGaAloD0MIPDCA8KFE6r+UhpRSlGgVSzJoFkdAl877W3BpH3V9lChoBmgJaA9DCBr6J7hYUdO/lIaUUpRoFUsyaBZHQJfUabPQfIV1fZQoaAZoCWgPQwj2YFJ8fELkv5SGlFKUaBVLMmgWR0CX0+UlAu7IdX2UKGgGaAloD0MIm8b2WtB70b+UhpRSlGgVSzJoFkdAl9NuBlMAWHV9lChoBmgJaA9DCLvx7shYbdy/lIaUUpRoFUsyaBZHQJfS9mL9/Bp1fZQoaAZoCWgPQwjid9MtO8Tiv5SGlFKUaBVLMmgWR0CX2GvduYQbdX2UKGgGaAloD0MIp1mg3SHF2L+UhpRSlGgVSzJoFkdAl9foekpI+XV9lChoBmgJaA9DCOy/zk2bcdy/lIaUUpRoFUsyaBZHQJfXccR15jZ1fZQoaAZoCWgPQwhFSrN5HAbUv5SGlFKUaBVLMmgWR0CX1vptaY/ndX2UKGgGaAloD0MITIi5pGo74b+UhpRSlGgVSzJoFkdAl9vjuF6Av3V9lChoBmgJaA9DCL4XX7THi+G/lIaUUpRoFUsyaBZHQJfbXh4t6HF1fZQoaAZoCWgPQwgIIos08Y7lv5SGlFKUaBVLMmgWR0CX2uWjoIOZdX2UKGgGaAloD0MIh22LMhtk17+UhpRSlGgVSzJoFkdAl9psNQTEi3V9lChoBmgJaA9DCIFZoUj38+S/lIaUUpRoFUsyaBZHQJfeJREWqLl1fZQoaAZoCWgPQwj9ogT9hR7lv5SGlFKUaBVLMmgWR0CX3Z6ySmqHdX2UKGgGaAloD0MIryE4LuOm2b+UhpRSlGgVSzJoFkdAl90loxpL3HV9lChoBmgJaA9DCLFvJxHhX+W/lIaUUpRoFUsyaBZHQJfcq9lEqlR1fZQoaAZoCWgPQwiAYI4evzflv5SGlFKUaBVLMmgWR0CX4FJL/S6UdX2UKGgGaAloD0MInrKarie66r+UhpRSlGgVSzJoFkdAl9/L30wrUnV9lChoBmgJaA9DCIMUPIVcKeG/lIaUUpRoFUsyaBZHQJffUsjFAFB1fZQoaAZoCWgPQwhKQEzChbzlv5SGlFKUaBVLMmgWR0CX3tkLhJiBdX2UKGgGaAloD0MIv0NRoE9k4L+UhpRSlGgVSzJoFkdAl+KDOLR8dHV9lChoBmgJaA9DCLX7VYDvNtu/lIaUUpRoFUsyaBZHQJfh/OSntOV1fZQoaAZoCWgPQwinyYy3lV7kv5SGlFKUaBVLMmgWR0CX4YRRuTA4dX2UKGgGaAloD0MIwjI2dLO/4L+UhpRSlGgVSzJoFkdAl+ELGza9K3V9lChoBmgJaA9DCOfj2lAxTuC/lIaUUpRoFUsyaBZHQJfkqBqbjLl1fZQoaAZoCWgPQwiif4KLFXXwv5SGlFKUaBVLMmgWR0CX5CILw4KhdX2UKGgGaAloD0MIsMvwn26g4b+UhpRSlGgVSzJoFkdAl+Oo9HMEBHV9lChoBmgJaA9DCHHjFvNzw+O/lIaUUpRoFUsyaBZHQJfjLzbvgFZ1fZQoaAZoCWgPQwjjcVEtIornv5SGlFKUaBVLMmgWR0CX5ysLfDUFdX2UKGgGaAloD0MIsfhNYaWC47+UhpRSlGgVSzJoFkdAl+aksjFAFHV9lChoBmgJaA9DCPPoRlhUROu/lIaUUpRoFUsyaBZHQJfmLKcNH6N1fZQoaAZoCWgPQwg2rn/XZ87kv5SGlFKUaBVLMmgWR0CX5bRcu8K5dX2UKGgGaAloD0MICvMeZ5qw4L+UhpRSlGgVSzJoFkdAl+llP3ztkXV9lChoBmgJaA9DCHvdIjDWN9S/lIaUUpRoFUsyaBZHQJfo30163RZ1fZQoaAZoCWgPQwhW8rG7QEnZv5SGlFKUaBVLMmgWR0CX6GazNUwSdX2UKGgGaAloD0MIH6FmSBXF3r+UhpRSlGgVSzJoFkdAl+fsinpB5XV9lChoBmgJaA9DCCkIHt/eNcq/lIaUUpRoFUsyaBZHQJfrkr9VFQV1fZQoaAZoCWgPQwiYvtcQHJfhv5SGlFKUaBVLMmgWR0CX6wxjriVCdX2UKGgGaAloD0MIPYGwU6wa27+UhpRSlGgVSzJoFkdAl+qTqrzXjHV9lChoBmgJaA9DCLBVgsXhzOW/lIaUUpRoFUsyaBZHQJfqGmce8wp1fZQoaAZoCWgPQwiRYKqZtZTkv5SGlFKUaBVLMmgWR0CX7cbFjurqdX2UKGgGaAloD0MInZ53Y0Fh1r+UhpRSlGgVSzJoFkdAl+1ATh5xBHV9lChoBmgJaA9DCI1BJ4QOOue/lIaUUpRoFUsyaBZHQJfsxv/BFd91fZQoaAZoCWgPQwjsL7snDwvhv5SGlFKUaBVLMmgWR0CX7E1V5rxidX2UKGgGaAloD0MIc0pATMKF3b+UhpRSlGgVSzJoFkdAl/ABA4XGfnV9lChoBmgJaA9DCLMMcayL29S/lIaUUpRoFUsyaBZHQJfveq7yxzJ1fZQoaAZoCWgPQwjDn+HNGrzhv5SGlFKUaBVLMmgWR0CX7wG2CulodX2UKGgGaAloD0MIdowrLo7K2L+UhpRSlGgVSzJoFkdAl+6H8CPp6nV9lChoBmgJaA9DCCFcAYV6euC/lIaUUpRoFUsyaBZHQJfyNwQ176Z1fZQoaAZoCWgPQwiMg0vHnGfOv5SGlFKUaBVLMmgWR0CX8bCngpBpdX2UKGgGaAloD0MIMCqpE9BE67+UhpRSlGgVSzJoFkdAl/E3scABDHV9lChoBmgJaA9DCM7EdCFWf+S/lIaUUpRoFUsyaBZHQJfwve54GEB1ZS4="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 24133, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}