File size: 2,042 Bytes
0733bae
ee60820
 
0733bae
ee60820
0733bae
ee60820
0733bae
1b8dc92
 
0733bae
ee60820
0733bae
 
 
 
 
 
ee60820
0733bae
ee60820
1b8dc92
74fe304
 
0733bae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c17e695
 
0733bae
 
 
 
a9dd21f
1b8dc92
 
 
 
74fe304
 
 
 
 
 
 
 
 
 
 
 
1b8dc92
4dcf62c
0733bae
 
52c0183
 
d2e7fed
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
language:
- en
license: apache-2.0
base_model: openai/whisper-medium.en
tags:
- hf-asr-leaderboard
- generated_from_trainer
metrics:
- wer
model-index:
- name: Whisper Base EN
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Base EN

This model is a fine-tuned version of [openai/whisper-medium.en](https://huggingface.co/openai/whisper-medium.en) on the ADLINK dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0003
- Wer: 448.7879

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 1000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer      |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.1004        | 25.0  | 100  | 1.0484          | 2.1212   |
| 0.3934        | 50.0  | 200  | 0.4056          | 45.7576  |
| 0.0206        | 75.0  | 300  | 0.0131          | 63.3333  |
| 0.0012        | 100.0 | 400  | 0.0012          | 280.0    |
| 0.0006        | 125.0 | 500  | 0.0006          | 319.6970 |
| 0.0004        | 150.0 | 600  | 0.0004          | 381.5152 |
| 0.0003        | 175.0 | 700  | 0.0003          | 380.0    |
| 0.0003        | 200.0 | 800  | 0.0003          | 497.8788 |
| 0.0003        | 225.0 | 900  | 0.0003          | 462.7273 |
| 0.0003        | 250.0 | 1000 | 0.0003          | 448.7879 |


### Framework versions

- Transformers 4.41.1
- Pytorch 2.3.0a0+ebedce2
- Datasets 2.19.1
- Tokenizers 0.19.1